![]() | This article may be too technical for most readers to understand.(December 2015) |
In physics, the Rabi cycle (or Rabi flop) is the cyclic behaviour of a two-level quantum system in the presence of an oscillatory driving field. A great variety of physical processes belonging to the areas of quantum computing, condensed matter, atomic and molecular physics, and nuclear and particle physics can be conveniently studied in terms of two-level quantum mechanical systems, and exhibit Rabi flopping when coupled to an optical driving field. The effect is important in quantum optics, magnetic resonance, and quantum computing, and is named after Isidor Isaac Rabi.
A two-level system is one that has two possible energy levels. One level is a ground state with lower energy, and the other is an excited state with higher energy. If the energy levels are not degenerate (i.e. don't have equal energies), the system can absorb or emit a quantum of energy and transition from the ground state to the excited state or vice versa. When an atom (or some other two-level system) is illuminated by a coherent beam of photons, it will cyclically absorb photons and emit them by stimulated emission. One such cycle is called a Rabi cycle, and the inverse of its duration is the Rabi frequency of the system. The effect can be modeled using the Jaynes–Cummings model and the Bloch vector formalism.
One example of Rabi flopping is the spin flipping within a quantum system containing a spin-1/2 particle and an oscillating magnetic field. We split the magnetic field into a constant 'environment' field, and the oscillating part, so that our field looks likewhere and are the strengths of the environment and the oscillating fields respectively, and is the frequency at which the oscillating field oscillates. We can then write a Hamiltonian describing this field, yieldingwhere , , and are the spin operators. The frequency is known as the Rabi frequency. We can substitute in their matrix forms to find the matrix representing the Hamiltonian:where we have used . This Hamiltonian is a function of time, meaning we cannot use the standard prescription of Schrödinger time evolution in quantum mechanics, where the time evolution operator is , because this formula assume that the Hamiltonian is constant with respect to time.
The main strategy in solving this problem is to transform the Hamiltonian so that the time dependence is gone, solve the problem in this transformed frame, and then transform the results back to normal. This can be done by shifting the reference frame that we work in to match the rotating magnetic field. If we rotate along with the magnetic field, then from our point of view, the magnetic field is not rotating and appears constant. Therefore, in the rotating reference frame, both the magnetic field and the Hamiltonian are constant with respect to time.
We denote our spin-1/2 particle state to be in the stationary reference frame, where and are spin up and spin down states respectively, and . We can transform this state to the rotating reference frame by using a rotation operator which rotates the state counterclockwise around the positive z-axis in state space, which may be visualized as a Bloch sphere. At a time and a frequency , the magnetic field will have precessed around by an angle . To transform into the rotating reference frame, note that the stationary x and y-axes rotate clockwise from the point of view of the rotating reference frame. Because the operator rotates counterclockwise, we must negate the angle to produce the correct state in the rotating reference frame. Thus, the state becomesWe may rewrite the amplitudes so thatThe time dependent Schrödinger equation in the stationary reference frame isExpanding this using the matrix forms of the Hamiltonian and the state yieldsApplying the matrix and separating the components of the vector allows us to write two coupled differential equations as followsTo transform this into the rotating reference frame, we may use the fact that and to write the following:where . Now defineWe now write these two new coupled differential equations back into the form of the Schrödinger equation:In some sense, this is a transformed Schrödinger equation in the rotating reference frame. Crucially, the Hamiltonian does not vary with respect to time, meaning in this reference frame, we can use the familiar solution to Schrödinger time evolution:This transformed problem is equivalent to that of Larmor precession of a spin state, so we have solved the essence of Rabi flopping. The probability that a particle starting in the spin up state flips to the spin down state can be stated aswhere is the generalized Rabi Frequency. Something important to notice is that will not reach 1 unless . In other words, the frequency of the rotating magnetic field must match the environmental field's Larmor frequency in order for the spin to fully flip; they must achieve resonance. When resonance (i.e. ) is achieved, .
Within the rotating reference frame, when resonance is achieved, it is as if there is no environmental magnetic field, and the oscillating magnetic field looks constant. Thus both mathematically (as we have derived) and physically, the problem reduces to the precession of a spin state under a constant magnetic field (Larmor precession).
To transform the solved state back to the stationary reference frame, we reuse the rotation operator with the opposite angle, thus yielding a full solution to the problem.
The Rabi effect is important in quantum optics, magnetic resonance and quantum computing.
Rabi flopping may be used to describe a two-level atom with an excited state and a ground state in an electromagnetic field with frequency tuned to the excitation energy. Using the spin-flipping formula but applying it to this system yields
where is the Rabi frequency.
Any two-state quantum system can be used to model a qubit. Rabi flopping provides a physical way to allow for spin flips in a qubit system. At resonance, the transition probability is given by To go from state to state it is sufficient to adjust the time during which the rotating field acts such that or . This is called a pulse. If a time intermediate between 0 and is chosen, we obtain a superposition of and . In particular for , we have a pulse, which acts as: The equations are essentially identical in the case of a two level atom in the field of a laser when the generally well satisfied rotating wave approximation is made, where is the energy difference between the two atomic levels, is the frequency of laser wave and Rabi frequency is proportional to the product of the transition electric dipole moment of atom and electric field of the laser wave that is . On a quantum computer, these oscillations are obtained by exposing qubits to periodic electric or magnetic fields during suitably adjusted time intervals. [1]
In quantum mechanics, the Hamiltonian of a system is an operator corresponding to the total energy of that system, including both kinetic energy and potential energy. Its spectrum, the system's energy spectrum or its set of energy eigenvalues, is the set of possible outcomes obtainable from a measurement of the system's total energy. Due to its close relation to the energy spectrum and time-evolution of a system, it is of fundamental importance in most formulations of quantum theory.
The quantum harmonic oscillator is the quantum-mechanical analog of the classical harmonic oscillator. Because an arbitrary smooth potential can usually be approximated as a harmonic potential at the vicinity of a stable equilibrium point, it is one of the most important model systems in quantum mechanics. Furthermore, it is one of the few quantum-mechanical systems for which an exact, analytical solution is known.
The Schrödinger equation is a partial differential equation that governs the wave function of a non-relativistic quantum-mechanical system. Its discovery was a significant landmark in the development of quantum mechanics. It is named after Erwin Schrödinger, an Austrian physicist, who postulated the equation in 1925 and published it in 1926, forming the basis for the work that resulted in his Nobel Prize in Physics in 1933.
In physics, the Heisenberg picture or Heisenberg representation is a formulation of quantum mechanics in which observables incorporate a dependency on time, but the states are time-independent. It stands in contrast to the Schrödinger picture in which observables are constant and the states evolve in time.
In atomic physics, a dark state refers to a state of an atom or molecule that cannot absorb photons. All atoms and molecules are described by quantum states; different states can have different energies and a system can make a transition from one energy level to another by emitting or absorbing one or more photons. However, not all transitions between arbitrary states are allowed. A state that cannot absorb an incident photon is called a dark state. This can occur in experiments using laser light to induce transitions between energy levels, when atoms can spontaneously decay into a state that is not coupled to any other level by the laser light, preventing the atom from absorbing or emitting light from that state.
Creation operators and annihilation operators are mathematical operators that have widespread applications in quantum mechanics, notably in the study of quantum harmonic oscillators and many-particle systems. An annihilation operator lowers the number of particles in a given state by one. A creation operator increases the number of particles in a given state by one, and it is the adjoint of the annihilation operator. In many subfields of physics and chemistry, the use of these operators instead of wavefunctions is known as second quantization. They were introduced by Paul Dirac.
The adiabatic theorem is a concept in quantum mechanics. Its original form, due to Max Born and Vladimir Fock (1928), was stated as follows:
In quantum mechanics, a two-state system is a quantum system that can exist in any quantum superposition of two independent quantum states. The Hilbert space describing such a system is two-dimensional. Therefore, a complete basis spanning the space will consist of two independent states. Any two-state system can also be seen as a qubit.
The rotating-wave approximation is an approximation used in atom optics and magnetic resonance. In this approximation, terms in a Hamiltonian that oscillate rapidly are neglected. This is a valid approximation when the applied electromagnetic radiation is near resonance with an atomic transition, and the intensity is low. Explicitly, terms in the Hamiltonians that oscillate with frequencies are neglected, while terms that oscillate with frequencies are kept, where is the light frequency, and is a transition frequency.
In quantum mechanics, an energy level is degenerate if it corresponds to two or more different measurable states of a quantum system. Conversely, two or more different states of a quantum mechanical system are said to be degenerate if they give the same value of energy upon measurement. The number of different states corresponding to a particular energy level is known as the degree of degeneracy of the level. It is represented mathematically by the Hamiltonian for the system having more than one linearly independent eigenstate with the same energy eigenvalue. When this is the case, energy alone is not enough to characterize what state the system is in, and other quantum numbers are needed to characterize the exact state when distinction is desired. In classical mechanics, this can be understood in terms of different possible trajectories corresponding to the same energy.
The Rabi problem concerns the response of an atom to an applied harmonic electric field, with an applied frequency very close to the atom's natural frequency. It provides a simple and generally solvable example of light–atom interactions and is named after Isidor Isaac Rabi.
The Rabi frequency is the frequency at which the probability amplitudes of two atomic energy levels fluctuate in an oscillating electromagnetic field. It is proportional to the transition dipole moment of the two levels and to the amplitude of the electromagnetic field. Population transfer between the levels of such a 2-level system illuminated with light exactly resonant with the difference in energy between the two levels will occur at the Rabi frequency; when the incident light is detuned from this energy difference then the population transfer occurs at the generalized Rabi frequency. The Rabi frequency is a semiclassical concept since it treats the atom as an object with quantized energy levels and the electromagnetic field as a continuous wave.
In quantum optics, the Jaynes–Cummings model is a theoretical model that describes the system of a two-level atom interacting with a quantized mode of an optical cavity, with or without the presence of light. It was originally developed to study the interaction of atoms with the quantized electromagnetic field in order to investigate the phenomena of spontaneous emission and absorption of photons in a cavity. It is named after Edwin Thompson Jaynes and Fred Cummings in the 1960s and was confirmed experimentally in 1987.
In spectroscopy, the Autler–Townes effect, is a dynamical Stark effect corresponding to the case when an oscillating electric field is tuned in resonance to the transition frequency of a given spectral line, and resulting in a change of the shape of the absorption/emission spectra of that spectral line. The AC Stark effect was discovered in 1955 by American physicists Stanley Autler and Charles Townes.
An LC circuit can be quantized using the same methods as for the quantum harmonic oscillator. An LC circuit is a variety of resonant circuit, and consists of an inductor, represented by the letter L, and a capacitor, represented by the letter C. When connected together, an electric current can alternate between them at the circuit's resonant frequency:
The Maxwell–Bloch equations, also called the optical Bloch equations describe the dynamics of a two-state quantum system interacting with the electromagnetic mode of an optical resonator. They are analogous to the Bloch equations which describe the motion of the nuclear magnetic moment in an electromagnetic field. The equations can be derived either semiclassically or with the field fully quantized when certain approximations are made.
In quantum mechanics, dynamical pictures are the multiple equivalent ways to mathematically formulate the dynamics of a quantum system.
In quantum mechanics, magnetic resonance is a resonant effect that can appear when a magnetic dipole is exposed to a static magnetic field and perturbed with another, oscillating electromagnetic field. Due to the static field, the dipole can assume a number of discrete energy eigenstates, depending on the value of its angular momentum (azimuthal) quantum number. The oscillating field can then make the dipole transit between its energy states with a certain probability and at a certain rate. The overall transition probability will depend on the field's frequency and the rate will depend on its amplitude. When the frequency of that field leads to the maximum possible transition probability between two states, a magnetic resonance has been achieved. In that case, the energy of the photons composing the oscillating field matches the energy difference between said states. If the dipole is tickled with a field oscillating far from resonance, it is unlikely to transition. That is analogous to other resonant effects, such as with the forced harmonic oscillator. The periodic transition between the different states is called Rabi cycle and the rate at which that happens is called Rabi frequency. The Rabi frequency should not be confused with the field's own frequency. Since many atomic nuclei species can behave as a magnetic dipole, this resonance technique is the basis of nuclear magnetic resonance, including nuclear magnetic resonance imaging and nuclear magnetic resonance spectroscopy.
In quantum probability, the Belavkin equation, also known as Belavkin-Schrödinger equation, quantum filtering equation, stochastic master equation, is a quantum stochastic differential equation describing the dynamics of a quantum system undergoing observation in continuous time. It was derived and henceforth studied by Viacheslav Belavkin in 1988.
In quantum mechanics, the Schrödinger equation describes how a system changes with time. It does this by relating changes in the state of the system to the energy in the system. Therefore, once the Hamiltonian is known, the time dynamics are in principle known. All that remains is to plug the Hamiltonian into the Schrödinger equation and solve for the system state as a function of time.