Rabi cycle

Last updated
Rabi oscillations, showing the probability of a two-level system initially in
|
1
> 
{\displaystyle |1\rangle }
to end up in
|
2
> 
{\displaystyle |2\rangle }
at different detunings D. Mplwp Rabi oscillations.svg
Rabi oscillations, showing the probability of a two-level system initially in to end up in at different detunings Δ.

In physics, the Rabi cycle (or Rabi flop) is the cyclic behaviour of a two-level quantum system in the presence of an oscillatory driving field. A great variety of physical processes belonging to the areas of quantum computing, condensed matter, atomic and molecular physics, and nuclear and particle physics can be conveniently studied in terms of two-level quantum mechanical systems, and exhibit Rabi flopping when coupled to an optical driving field. The effect is important in quantum optics, magnetic resonance and quantum computing, and is named after Isidor Isaac Rabi.

Contents

A two-level system is one that has two possible energy levels. These two levels are a ground state with lower energy and an excited state with higher energy. If the energy levels are not degenerate (i.e. not having equal energies), the system can absorb a quantum of energy and transition from the ground state to the "excited" state. When an atom (or some other two-level system) is illuminated by a coherent beam of photons, it will cyclically absorb photons and re-emit them by stimulated emission. One such cycle is called a Rabi cycle, and the inverse of its duration is the Rabi frequency of the system. The effect can be modeled using the Jaynes–Cummings model and the Bloch vector formalism.

Mathematical description

A detailed mathematical description of the effect can be found on the page for the Rabi problem. For example, for a two-state atom (an atom in which an electron can either be in the excited or ground state) in an electromagnetic field with frequency tuned to the excitation energy, the probability of finding the atom in the excited state is found from the Bloch equations to be

where is the Rabi frequency.

More generally, one can consider a system where the two levels under consideration are not energy eigenstates. Therefore, if the system is initialized in one of these levels, time evolution will make the population of each of the levels oscillate with some characteristic frequency, whose angular frequency [1] is also known as the Rabi frequency. The state of a two-state quantum system can be represented as vectors of a two-dimensional complex Hilbert space, which means that every state vector is represented by complex coordinates:

where and are the coordinates. [2]

If the vectors are normalized, and are related by . The basis vectors will be represented as and .

All observable physical quantities associated with this systems are 2 × 2 Hermitian matrices, which means that the Hamiltonian of the system is also a similar matrix.

Derivations

One can construct an oscillation experiment through the following steps: [3]

  1. Prepare the system in a fixed state; for example,
  2. Let the state evolve freely, under a Hamiltonian H for time t
  3. Find the probability , that the state is in

If is an eigenstate of H, and there will be no oscillations. Also if the two states and are degenerate, every state including is an eigenstate of H. As a result, there will be no oscillations.

On the other hand, if H has no degenerate eigenstates, and the initial state is not an eigenstate, then there will be oscillations. The most general form of the Hamiltonian of a two-state system is given

here, and are real numbers. This matrix can be decomposed as,

The matrix is the 2 2 identity matrix and the matrices are the Pauli matrices. This decomposition simplifies the analysis of the system especially in the time-independent case where the values of and are constants. Consider the case of a spin-1/2 particle in a magnetic field . The interaction Hamiltonian for this system is

,

where is the magnitude of the particle's magnetic moment, is the Gyromagnetic ratio and is the vector of Pauli matrices. Here the eigenstates of Hamiltonian are eigenstates of , that is and , with corresponding eigenvalues of . The probability that a system in the state can be found in the arbitrary state is given by .

Let the system be prepared in state at time . Note that is an eigenstate of :

Here the Hamiltonian is time independent. Thus by solving the stationary Schrödinger equation, the state after time t is given by with total energy of the system . So the state after time t is given by:

.

Now suppose the spin is measured in x-direction at time t. The probability of finding spin-up is given by:where is a characteristic angular frequency given by , where it has been assumed that . [4] So in this case the probability of finding spin-up in x-direction is oscillatory in time when the system's spin is initially in the direction. Similarly, if we measure the spin in the -direction, the probability of measuring spin as of the system is . In the degenerate case where , the characteristic frequency is 0 and there is no oscillation.

Notice that if a system is in an eigenstate of a given Hamiltonian, the system remains in that state.

This is true even for time dependent Hamiltonians. Taking for example ; if the system's initial spin state is , then the probability that a measurement of the spin in the y-direction results in at time is . [5]

By Pauli matrices

Consider a Hamiltonian of the formThe eigenvalues of this matrix are given bywhere and , so we can take .

Now, eigenvectors for can be found from equationSoApplying the normalization condition on the eigenvectors, . SoLet and . So .

So we get . That is , using the identity .

The phase of relative to should be .

Choosing to be real, the eigenvector for the eigenvalue is given bySimilarly, the eigenvector for eigenenergy isFrom these two equations, we can writeSuppose the system starts in state at time ; that is,For a time-independent Hamiltonian, after time t, the state evolves asIf the system is in one of the eigenstates or , it will remain the same state. However, for a time-dependent Hamiltonian and a general initial state as shown above, the time evolution is non trivial. The resulting formula for the Rabi oscillation is valid because the state of the spin may be viewed in a reference frame that rotates along with the field. [6]

The probability amplitude of finding the system at time t in the state is given by .

Now the probability that a system in the state will be found to be in the state is given byThis can be simplified to

This shows that there is a finite probability of finding the system in state when the system is originally in the state . The probability is oscillatory with angular frequency , which is simply unique Bohr frequency of the system and also called Rabi frequency. The formula ( 1 ) is known as Rabi formula. Now after time t the probability that the system in state is given by , which is also oscillatory.

These types of oscillations of two-level systems are called Rabi oscillations, which arise in many problems such as Neutrino oscillation, the ionized Hydrogen molecule, Quantum computing, Ammonia maser, etc.

Applications

The Rabi effect is important in quantum optics, magnetic resonance and quantum computing.

Quantum optics

Quantum computing

Any two-state quantum system can be used to model a qubit. Consider a spin- system with magnetic moment placed in a classical magnetic field . Let be the gyromagnetic ratio for the system. The magnetic moment is thus . The Hamiltonian of this system is then given by where and . One can find the eigenvalues and eigenvectors of this Hamiltonian by the above-mentioned procedure. Now, let the qubit be in state at time . Then, at time , the probability of it being found in state is given by where . This phenomenon is called Rabi oscillation. Thus, the qubit oscillates between the and states. The maximum amplitude for oscillation is achieved at , which is the condition for resonance. At resonance, the transition probability is given by . To go from state to state it is sufficient to adjust the time during which the rotating field acts such that or . This is called a pulse. If a time intermediate between 0 and is chosen, we obtain a superposition of and . In particular for , we have a pulse, which acts as: . This operation has crucial importance in quantum computing. The equations are essentially identical in the case of a two level atom in the field of a laser when the generally well satisfied rotating wave approximation is made. Then is the energy difference between the two atomic levels, is the frequency of laser wave and Rabi frequency is proportional to the product of the transition electric dipole moment of atom and electric field of the laser wave that is . In summary, Rabi oscillations are the basic process used to manipulate qubits. These oscillations are obtained by exposing qubits to periodic electric or magnetic fields during suitably adjusted time intervals. [7]

See also

Related Research Articles

In electrodynamics, linear polarization or plane polarization of electromagnetic radiation is a confinement of the electric field vector or magnetic field vector to a given plane along the direction of propagation. The term linear polarization was coined by Augustin-Jean Fresnel in 1822. See polarization and plane of polarization for more information.

<span class="mw-page-title-main">Quantum harmonic oscillator</span> Important, well-understood quantum mechanical model

The quantum harmonic oscillator is the quantum-mechanical analog of the classical harmonic oscillator. Because an arbitrary smooth potential can usually be approximated as a harmonic potential at the vicinity of a stable equilibrium point, it is one of the most important model systems in quantum mechanics. Furthermore, it is one of the few quantum-mechanical systems for which an exact, analytical solution is known.

In atomic physics, a dark state refers to a state of an atom or molecule that cannot absorb photons. All atoms and molecules are described by quantum states; different states can have different energies and a system can make a transition from one energy level to another by emitting or absorbing one or more photons. However, not all transitions between arbitrary states are allowed. A state that cannot absorb an incident photon is called a dark state. This can occur in experiments using laser light to induce transitions between energy levels, when atoms can spontaneously decay into a state that is not coupled to any other level by the laser light, preventing the atom from absorbing or emitting light from that state.

In physics, a wave vector is a vector used in describing a wave, with a typical unit being cycle per metre. It has a magnitude and direction. Its magnitude is the wavenumber of the wave, and its direction is perpendicular to the wavefront. In isotropic media, this is also the direction of wave propagation.

<span class="mw-page-title-main">Bloch sphere</span> Geometrical representation of the pure state space of a two-level quantum mechanical system

In quantum mechanics and computing, the Bloch sphere is a geometrical representation of the pure state space of a two-level quantum mechanical system (qubit), named after the physicist Felix Bloch.

In rotordynamics, the rigid rotor is a mechanical model of rotating systems. An arbitrary rigid rotor is a 3-dimensional rigid object, such as a top. To orient such an object in space requires three angles, known as Euler angles. A special rigid rotor is the linear rotor requiring only two angles to describe, for example of a diatomic molecule. More general molecules are 3-dimensional, such as water, ammonia, or methane.

<span class="mw-page-title-main">Two-state quantum system</span> Simple quantum mechanical system

In quantum mechanics, a two-state system is a quantum system that can exist in any quantum superposition of two independent quantum states. The Hilbert space describing such a system is two-dimensional. Therefore, a complete basis spanning the space will consist of two independent states. Any two-state system can also be seen as a qubit.

In particle physics, neutral particle oscillation is the transmutation of a particle with zero electric charge into another neutral particle due to a change of a non-zero internal quantum number, via an interaction that does not conserve that quantum number. Neutral particle oscillations were first investigated in 1954 by Murray Gell-mann and Abraham Pais.

The Rabi frequency is the frequency at which the probability amplitudes of two atomic energy levels fluctuate in an oscillating electromagnetic field. It is proportional to the transition dipole moment of the two levels and to the amplitude of the electromagnetic field. Population transfer between the levels of such a 2-level system illuminated with light exactly resonant with the difference in energy between the two levels will occur at the Rabi frequency; when the incident light is detuned from this energy difference then the population transfer occurs at the generalized Rabi frequency. The Rabi frequency is a semiclassical concept since it treats the atom as an object with quantized energy levels and the electromagnetic field as a continuous wave.

<span class="mw-page-title-main">Jaynes–Cummings model</span> Model in quantum optics

The Jaynes–Cummings model is a theoretical model in quantum optics. It describes the system of a two-level atom interacting with a quantized mode of an optical cavity, with or without the presence of light. It was originally developed to study the interaction of atoms with the quantized electromagnetic field in order to investigate the phenomena of spontaneous emission and absorption of photons in a cavity.

Sinusoidal plane-wave solutions are particular solutions to the wave equation.

Photon polarization is the quantum mechanical description of the classical polarized sinusoidal plane electromagnetic wave. An individual photon can be described as having right or left circular polarization, or a superposition of the two. Equivalently, a photon can be described as having horizontal or vertical linear polarization, or a superposition of the two.

A vacuum Rabi oscillation is a damped oscillation of an initially excited atom coupled to an electromagnetic resonator or cavity in which the atom alternately emits photon(s) into a single-mode electromagnetic cavity and reabsorbs them. The atom interacts with a single-mode field confined to a limited volume V in an optical cavity. Spontaneous emission is a consequence of coupling between the atom and the vacuum fluctuations of the cavity field.

The Kapitza–Dirac effect is a quantum mechanical effect consisting of the diffraction of matter by a standing wave of light. The effect was first predicted as the diffraction of electrons from a standing wave of light by Paul Dirac and Pyotr Kapitsa in 1933. The effect relies on the wave–particle duality of matter as stated by the de Broglie hypothesis in 1924.

Amplitude amplification is a technique in quantum computing which generalizes the idea behind Grover's search algorithm, and gives rise to a family of quantum algorithms. It was discovered by Gilles Brassard and Peter Høyer in 1997, and independently rediscovered by Lov Grover in 1998.

<span class="mw-page-title-main">Kicked rotator</span>

The kicked rotator, also spelled as kicked rotor, is a paradigmatic model for both Hamiltonian chaos and quantum chaos. It describes a free rotating stick in an inhomogeneous "gravitation like" field that is periodically switched on in short pulses. The model is described by the Hamiltonian

In physics, Berry connection and Berry curvature are related concepts which can be viewed, respectively, as a local gauge potential and gauge field associated with the Berry phase or geometric phase. The concept was first introduced by S. Pancharatnam as geometric phase and later elaborately explained and popularized by Michael Berry in a paper published in 1984 emphasizing how geometric phases provide a powerful unifying concept in several branches of classical and quantum physics.

<span class="mw-page-title-main">Stimulated Raman adiabatic passage</span>

Stimulated Raman adiabatic passage (STIRAP) is a process that permits transfer of a population between two applicable quantum states via at least two coherent electromagnetic (light) pulses. These light pulses drive the transitions of the three level Ʌ atom or multilevel system. The process is a form of state-to-state coherent control.

In pure and applied mathematics, quantum mechanics and computer graphics, a tensor operator generalizes the notion of operators which are scalars and vectors. A special class of these are spherical tensor operators which apply the notion of the spherical basis and spherical harmonics. The spherical basis closely relates to the description of angular momentum in quantum mechanics and spherical harmonic functions. The coordinate-free generalization of a tensor operator is known as a representation operator.

In quantum mechanics, magnetic resonance is a resonant effect that can appear when a magnetic dipole is exposed to a static magnetic field and perturbed with another, oscillating electromagnetic field. Due to the static field, the dipole can assume a number of discrete energy eigenstates, depending on the value of its angular momentum (azimuthal) quantum number. The oscillating field can then make the dipole transit between its energy states with a certain probability and at a certain rate. The overall transition probability will depend on the field's frequency and the rate will depend on its amplitude. When the frequency of that field leads to the maximum possible transition probability between two states, a magnetic resonance has been achieved. In that case, the energy of the photons composing the oscillating field matches the energy difference between said states. If the dipole is tickled with a field oscillating far from resonance, it is unlikely to transition. That is analogous to other resonant effects, such as with the forced harmonic oscillator. The periodic transition between the different states is called Rabi cycle and the rate at which that happens is called Rabi frequency. The Rabi frequency should not be confused with the field's own frequency. Since many atomic nuclei species can behave as a magnetic dipole, this resonance technique is the basis of nuclear magnetic resonance, including nuclear magnetic resonance imaging and nuclear magnetic resonance spectroscopy.

References

  1. Rabi oscillations, Rabi frequency, stimulated emission. Encyclopedia of Laser Physics and Technology.
  2. Griffiths, David (2005). Introduction to Quantum Mechanics (2nd ed.). p.  341.
  3. Sourendu Gupta (27 August 2013). "The physics of 2-state systems" (PDF). Tata Institute of Fundamental Research.
  4. Griffiths, David (2012). Introduction to Quantum Mechanics (2nd ed.) p. 191.
  5. Griffiths, David (2012). Introduction to Quantum Mechanics (2nd ed.) p. 196 ISBN   978-8177582307
  6. Merlin, R. (2021). "Rabi oscillations, Floquet states, Fermi's golden rule, and all that: Insights from an exactly solvable two-level model". American Journal of Physics. 89 (1): 26–34. Bibcode:2021AmJPh..89...26M. doi: 10.1119/10.0001897 . S2CID   234321681.
  7. A Short Introduction to Quantum Information and Quantum Computation by Michel Le Bellac, ISBN   978-0521860567