Radio-controlled aerobatics is the practice of flying radio-controlled aircraft in maneuvers involving aircraft attitudes that are not used in normal flight.
Due to its simplicity, the inside loop is among the first aerobatic maneuvers a pilot learns. It is named after a 360 degree circle with the pilot on the inside of the loop. Simply applying power while pulling back on the elevator stick will cause the aircraft to loop upward into vertical flight, continue into inverted flight, continue into a dive, and return to horizontal flight. A well-performed inside loop will look like clean circle with the same entry and exit point, and this requires management of power to overcome the tendency of gravity to shorten the upward portion and lengthen the downward portion.
The inside loop is performed by:
An outside loop follows the same path as an inside loop, but is performed with the pilot or cockpit on the outside of the circle the aircraft describes.
Therefore, if the aircraft starts in a normal, upright flight position, then an outside loop will be performed by inputting down elevator and progressing down below the original line of flight before executing a circular path to return to the original position. This is sometimes referred to as a 'bunt'.
Outside loops generally require more power and a higher control input than inside loops to perform because the lift force is in an outwards direction, thus tending to pull the aircraft out of the loop.
The Immelmann turn is named after flying ace Max Immelmann. It has become one of the most popular aerial maneuvers, being commonly used in airshows all across the globe.
To execute the Immelmann turn, the pilot pulls the aircraft into a vertical climb, and eventually completes half a loop in the aircraft from this climb, inverting the aircraft. The pilot then executes a half-roll to regain level flight.
The Immelmann turn can also be reversed by starting with a half-roll into inverted flight, and then using elevator to pull the aircraft down through a half loop back to level flight.
In both cases, the aircraft has changed course 180 degrees and exchanges speed with altitude.
An aircraft is in inverted flight when it has rotated 180 degrees about its longitudinal axis, so that its cockpit and tail fin are pointing at the ground.
Inverted flight in itself is not generally regarded as a maneuver, rather as an attitude in which to perform other aerobatic maneuvers. Therefore, an inverted maneuver is one in which the aircraft begins in an inverted flight position.
There are many ways to enter inverted flight. The simplest is to
When in inverted flight, elevator and rudder inputs are reversed while aileron and throttle input remains the same.
Alternatively, one can enter inverted flight by performing half an inside loop or half an outside loop.
The intermediate maneuvers, not suitable for beginners, require skills acquired by considerable practice, and often include the use of stalls. Trainer aircraft are not suitable for these. [1]
In a stall turn the plane goes upward, decelerates, yaws 180° under stall, and comes down nearly the same path it goes up, as if it gets hammered on the head.
To perform a stall turn;
The slow roll is just what the name implies. It is accomplished by inputting either right or left aileron. However, unlike most axial rolls, the slow roll is performed using less than full deflection in the ailerons. The result is a graceful maneuver, but because the aircraft is knife-edge or inverted for a long duration of time, rudder and elevator have to be used to maintain a straight flight path.
When the left wing is down, right rudder is needed to hold level flight. Rolling slowly left will require moving the rudder slowly to the right, then back to center as the wings become level in inverted flight (where of course some elevator is needed), and then to the left as the roll continues and puts the right wing down, and finally back to center and the aircraft returns to straight and level flight.
A slow roll performed on a straight line like an imaginary taut string is a deceptively difficult maneuver that will take considerable practice. Its accomplishment may only be recognized by the best pilots but will lead the student to advanced maneuvers.
The four-point roll is a quick series of quarter rolls. The pilot gives four separate, but very brief aileron inputs. The first rolls the aircraft to knife-edge, the second rolls the aircraft inverted, the third rolls the aircraft to opposite knife-edge, and the final input rolls the aircraft back to upright.
The snap roll is an aggressive roll. The aircraft rotates about all axes at the same time, the predominant rotation being about the longitudinal axis. This sometimes violent maneuver is accomplished one of two ways. A positive, or inside, snap is executed by going hard over on all controls: full aileron, full rudder, and full up elevator. A negative, or outside, snap, is executed differently: full aileron, full opposite rudder, full down elevator.
The Cuban 8 is a combination move involving both regular and inverted flight. The figure 8 maneuver is started from straight and level flight, and then pulling up and over into inverted flight. Rolling 180 degrees puts the airframe back to normal orientation to cross over in the middle of the eight and then pull back up into inverted flight again. Rolling out the second time and descending back to cross the 8 again completes the maneuver.
You could say the Cuban-8 maneuver is like a figure 8 on a vertical plane that consists of two Immelmann turns.
Aresti Symbol | |
---|---|
Cuban Eight | |
Half Cuban Eight | |
Reverse Half Cuban Eight | |
Rolling circle is a maneuver in which an aircraft rolls continuously while turning in a circle. This is arguably one of the most difficult maneuvers to perfect, since varying pitch and yaw corrections are necessary to keep the heading level while maintaining constant roll rate and turning radius.
The standard rolling circle involves 1 roll at each quadrant of the turn, resulting in a total of 4 rolls throughout the 360° horizontal turn. The most logical method to approach the rolling circle is to think of it as 4 slow rolls with turn. The procedure below describes a left-turning right-rolling quadrant:
Below is a graph that illustrates the elevator and rudder input as a function of rolling position during one turn quadrant. For this case, 60° rudder phase lead and 90° elevator phase lead are used. Actual amplitude and phase leads may vary depending on aircraft behavior.
The Lomcevak maneuver is when the aircraft's tail spins pitching down about its wing while the entire aircraft is continuously stalled.
There are several methods to execute this maneuver. The most common method is as follows:
Alternatively, one can enter Lomcevak as follows:
This maneuver calls for a specific type of aircraft. Since the motion involves rapid downward pitch, a low-wing aircraft with high thrustline is desirable, as it naturally creates the downward pitch moment. Also, the aircraft should readily snap on command. Cap 232 is by far the easiest design by which to execute Lomcevak.
In flight dynamics a spin is a special category of stall resulting in autorotation about the aircraft's longitudinal axis and a shallow, rotating, downward path approximately centred on a vertical axis. Spins can be entered intentionally or unintentionally, from any flight attitude if the aircraft has sufficient yaw while at the stall point. In a normal spin, the wing on the inside of the turn stalls while the outside wing remains flying. It is possible for both wings to stall, but the angle of attack of each wing, and consequently its lift and drag, are different.
Aircraft flight control surfaces are aerodynamic devices allowing a pilot to adjust and control the aircraft's flight attitude.
The hammerhead turn, stall turn, or Fieseler is an aerobatics turn-around maneuver.
A slip is an aerodynamic state where an aircraft is moving somewhat sideways as well as forward relative to the oncoming airflow or relative wind. In other words, for a conventional aircraft, the nose will be pointing in the opposite direction to the bank of the wing(s). The aircraft is not in coordinated flight and therefore is flying inefficiently.
Aerobatic maneuvers are flight paths putting aircraft in unusual attitudes, in air shows, dogfights or competition aerobatics. Aerobatics can be performed by a single aircraft or in formation with several others. Nearly all aircraft are capable of performing aerobatics maneuvers of some kind, although it may not be legal or safe to do so in certain aircraft.
Aircraft flight mechanics are relevant to fixed wing and rotary wing (helicopters) aircraft. An aeroplane, is defined in ICAO Document 9110 as, "a power-driven heavier than air aircraft, deriving its lift chiefly from aerodynamic reactions on surface which remain fixed under given conditions of flight".
In aerobatics, the cobra maneuver, also called dynamic deceleration, among other names, is a dramatic and demanding maneuver in which an airplane flying at a moderate speed abruptly raises its nose momentarily to a vertical and slightly past vertical attitude, causing an extremely high angle of attack and momentarily stalling the plane, making a full-body air brake before dropping back to normal position, during which the aircraft does not change effective altitude.
The split S is an Aerobatic maneuver and an air combat maneuver mostly used to disengage from combat. To execute a split S, the pilot half-rolls their aircraft inverted and executes a descending half-loop, resulting in level flight in the opposite direction at a lower altitude.
Basic fighter maneuvers (BFM) are tactical movements performed by fighter aircraft during air combat maneuvering, to gain a positional advantage over the opponent. BFM combines the fundamentals of aerodynamic flight and the geometry of pursuit, with the physics of managing the aircraft's energy-to-mass ratio, called its specific energy.
A barrel roll is an aerial maneuver in which an airplane makes a complete rotation on both its longitudinal and lateral axes, causing it to follow a helical path, approximately maintaining its original direction. It is sometimes described as a "combination of a loop and a roll". The g-force is kept positive on the object throughout the maneuver, commonly between 2 and 3g, and no less than 0.5g. The barrel roll is commonly confused with an aileron roll.
The term Immelmann turn, named after German World War I Eindecker fighter ace Leutnant Max Immelmann, refers to two different aircraft maneuvers. In World War I aerial combat, an Immelmann turn was a maneuver used after an attack on another aircraft to reposition the attacking aircraft for another attack. In modern aerobatics, an Immelmann turn is an aerobatic maneuver that results in level flight in the opposite direction at a higher altitude.
A Cuban eight or Cuban 8 is a figure eight aerobatic maneuver for both full-scale and radio-controlled fixed-wing aircraft.
The aileron roll is an aerobatic maneuver in which an aircraft does a full 360° revolution about its longitudinal axis. When executed properly, there is no appreciable change in altitude and the aircraft exits the maneuver on the same heading as it entered. This is commonly one of the first maneuvers taught in basic aerobatics courses. The aileron roll is commonly confused with a barrel roll.
In aviation, PARE is a mnemonic for a generic spin recovery technique applicable to many types of fixed-wing aircraft.
Supermaneuverability is the capability of fighter aircraft to execute tactical maneuvers that are not possible with purely aerodynamic techniques. Such maneuvers can involve controlled side-slipping or angles of attack beyond maximum lift.
3D Aerobatics or 3D flying is a form of flying using flying aircraft to perform specific aerial maneuvers. They are usually performed when the aircraft had been intentionally placed in a stalled position for purposes of entertainment or display. They are also often referred to as post-stall maneuvers, as they occur after aerodynamic stall has occurred and standard control surface deflections, as used in flight, are not effective.
A slow roll is a roll made by an airplane, in which the plane makes a complete rotation around its roll axis while keeping the aircraft flying a straight and level flightpath. A slow roll is performed more slowly than an aileron roll; although it is not necessarily performed very slowly, it is performed slowly enough to allow the pilot to maintain balance, keeping a steady flightpath, pitch angle, and height (altitude) throughout the maneuver. The maneuver is performed by rolling the airplane at a controlled rate with the ailerons, and moving the elevators and rudder in opposition, or "cross-controlling," to keep the plane on a steady, level flightpath.
A wingover is an aerobatic maneuver in which an airplane makes a steep climb, followed by a vertical flat-turn. The maneuver ends with a short dive as the plane gently levels out, flying in the opposite direction from which the maneuver began.
A falling leaf is a maneuver in which an aircraft performs a wings-level stall which begins to induce a spin. This spin is countered with the rudder, which begins a spin in the opposite direction that must be countered with rudder, and the process is repeated as many times as the pilot determines. During the maneuver, the plane resembles a leaf falling from the sky; first slipping to one side, stopping, and then slipping to the other direction; continuing a side-to-side motion as it drifts toward the ground.
The Hineri-komi was an air combat maneuver widely used by fighter pilots of Imperial Japanese Navy Air Service (IJNAS) through the Second Sino-Japanese War and the Pacific War. It allows an aircraft, which is being pursued by an enemy, to come at the pursuer's tail or to gain an opportunity to take a shot at it.