Ralph S. Baric

Last updated

Ralph S. Baric
Born1954 (age 6869)
Nationality American
Alma mater North Carolina State University
Scientific career
Fields Epidemiology
Institutions University of North Carolina at Chapel Hill
Thesis Inhibitors of host transcription block Sindbis virus replication  (1982)
Doctoral advisor Robert E. Johnston
Doctoral students Lisa Ellen Hensley

Ralph Steven Baric (born 1954) is William R. Kenan Jr. Distinguished Professor in the Department of Epidemiology, and professor in the Department of Microbiology and Immunology at The University of North Carolina at Chapel Hill.

Contents

Baric's work involves coronaviruses, including gain of function research aimed at devising effective vaccines against coronaviruses. [1] Baric has warned of emerging coronaviruses presenting as a significant threat to global health, due to zoonosis. [2] [3] Baric's work has drawn criticism from some scientists and members of the public related to chimeric virus experiments conducted at UNC-Chapel Hill. [4]

Career

Baric has published multiple articles and book chapters on the epidemiology and genetics of various viruses, including norovirus, [5] [6] [7] and coronaviruses, [8] [9] as well as potential treatments for viral diseases. [10] [11]

In 2015, with Shi Zhengli of the Wuhan Institute of Virology, he published an article titled "A SARS-like cluster of circulating bat coronaviruses shows potential for human emergence," which describes their work in generating and characterizing a chimeric virus which added the spike of a bat coronavirus (SHC014) onto the backbone of a mouse-adapted SARS-CoV (rMA15). [12] The research related to this article drew criticism from other scientists due to fears that the SHC014-rMA15 chimeric virus could have pandemic potential. [13] This concern was renewed and echoed by members of the public during the COVID-19 pandemic. [14] Experts have noted that the virus was adapted to a mouse model and had decreased virulence in human tissues. [15] The chimeric virus was also less virulent than the wild type rMA15 virus, as is expected in most chimeras. [15]

In 2020, Baric contributed to establishing the official nomenclature and taxonomic classification of SARS-CoV-2. [16] In 2021, he was elected member of the U. S. National Academy of Sciences. [17]

Related Research Articles

<span class="mw-page-title-main">SARS-related coronavirus</span> Species of coronavirus causing SARS and COVID-19

Severe acute respiratory syndrome–related coronavirus is a species of virus consisting of many known strains phylogenetically related to severe acute respiratory syndrome coronavirus 1 (SARS-CoV-1) that have been shown to possess the capability to infect humans, bats, and certain other mammals. These enveloped, positive-sense single-stranded RNA viruses enter host cells by binding to the angiotensin-converting enzyme 2 (ACE2) receptor. The SARSr-CoV species is a member of the genus Betacoronavirus and of the subgenus Sarbecovirus.

<i>Coronaviridae</i> Family of viruses in the order Nidovirales

Coronaviridae is a family of enveloped, positive-strand RNA viruses which infect amphibians, birds, and mammals. The group includes the subfamilies Letovirinae and Orthocoronavirinae; the members of the latter are known as coronaviruses.

<span class="mw-page-title-main">SARS-CoV-1</span> Virus that causes SARS

Severe acute respiratory syndrome coronavirus 1 (SARS-CoV-1), previously known as severe acute respiratory syndrome coronavirus (SARS-CoV), is a strain of coronavirus that causes severe acute respiratory syndrome (SARS), the respiratory illness responsible for the 2002–2004 SARS outbreak. It is an enveloped, positive-sense, single-stranded RNA virus that infects the epithelial cells within the lungs. The virus enters the host cell by binding to angiotensin-converting enzyme 2. It infects humans, bats, and palm civets. The SARS-CoV-1 outbreak was largely brought under control by simple public health measures. Testing people with symptoms, isolating and quarantining suspected cases, and restricting travel all had an effect. SARS-CoV-1 was most transmissible when patients were sick, so its spread could be effectively suppressed by isolating patients with symptoms.

Bat SARS-like coronavirus WIV1, also sometimes called SARS-like coronavirus WIV1, is a strain of severe acute respiratory syndrome–related coronavirus (SARSr-CoV) isolated from Chinese rufous horseshoe bats in 2013. Like all coronaviruses, virions consist of single-stranded positive-sense RNA enclosed within an envelope.

Shi Zhengli is a Chinese virologist who researches SARS-like coronaviruses of bat origin. Shi directs the Center for Emerging Infectious Diseases at the Wuhan Institute of Virology (WIV). In 2017, Shi and her colleague Cui Jie discovered that the SARS coronavirus likely originated in a population of cave-dwelling horseshoe bats in Xiyang Yi Ethnic Township, Yunnan. She came to prominence in the popular press as "Batwoman" during the COVID-19 pandemic for her work with bat coronaviruses. Shi was included in Time's 100 Most Influential People of 2020.

<span class="mw-page-title-main">SARS-CoV-2</span> Virus that causes COVID-19

Severe acute respiratory syndrome coronavirus 2 (SARS‑CoV‑2) is a strain of coronavirus that causes COVID-19, the respiratory illness responsible for the COVID-19 pandemic. The virus previously had the provisional name 2019 novel coronavirus (2019-nCoV), and has also been called human coronavirus 2019. First identified in the city of Wuhan, Hubei, China, the World Health Organization designated the outbreak a public health emergency of international concern from January 30, 2020, to May 5, 2023. SARS‑CoV‑2 is a positive-sense single-stranded RNA virus that is contagious in humans.

<span class="mw-page-title-main">Coronavirus diseases</span> List of Coronavirus diseases

Coronavirus diseases are caused by viruses in the coronavirus subfamily, a group of related RNA viruses that cause diseases in mammals and birds. In humans and birds, the group of viruses cause respiratory tract infections that can range from mild to lethal. Mild illnesses in humans include some cases of the common cold, while more lethal varieties can cause SARS, MERS and COVID-19. As of 2021, 45 species are registered as coronaviruses, whilst 11 diseases have been identified, as listed below.

<span class="mw-page-title-main">Wuhan Institute of Virology</span> Research Institute in Wuhan, Hubei, China

The Wuhan Institute of Virology, Chinese Academy of Sciences is a research institute on virology administered by the Chinese Academy of Sciences (CAS), which reports to the State Council of the People's Republic of China. The institute is one of nine independent organisations in the Wuhan Branch of the CAS. Located in Jiangxia District, Wuhan, Hubei, it was founded in 1956 and opened mainland China's first biosafety level 4 (BSL-4) laboratory in 2018. The institute has collaborated with the Galveston National Laboratory in the United States, the Centre International de Recherche en Infectiologie in France, and the National Microbiology Laboratory in Canada. The institute has been an active premier research center for the study of coronaviruses.

SHC014-CoV is a SARS-like coronavirus (SL-COV) which infects horseshoe bats. It was discovered in Kunming in Yunnan Province, China. It was discovered along with SL-CoV Rs3367, which was the first bat SARS-like coronavirus shown to directly infect a human cell line. The line of Rs3367 that infected human cells was named Bat SARS-like coronavirus WIV1.

<span class="mw-page-title-main">History of coronavirus</span> History of the virus group

The history of coronaviruses is an account of the discovery of the diseases caused by coronaviruses and the diseases they cause. It starts with the first report of a new type of upper-respiratory tract disease among chickens in North Dakota, U.S., in 1931. The causative agent was identified as a virus in 1933. By 1936, the disease and the virus were recognised as unique from other viral disease. They became known as infectious bronchitis virus (IBV), but later officially renamed as Avian coronavirus.

Bat coronavirus RaTG13 is a SARS-like betacoronavirus identified in the droppings of the horseshoe bat Rhinolophus affinis. It was discovered in 2013 in bat droppings from a mining cave near the town of Tongguan in Mojiang county in Yunnan, China. In February 2020, it was identified as the closest known relative of SARS-CoV-2, the virus that causes COVID-19, sharing 96.1% nucleotide identity. However, in 2022, scientists found three closer matches in bats found 530 km south, in Feuang, Laos, designated as BANAL-52, BANAL-103 and BANAL-236.

<span class="mw-page-title-main">Origin of COVID-19</span> Inquiries into the origins of SARS-CoV-2

Since the beginning of the COVID-19 pandemic, there have been efforts by scientists, governments, and others to determine the origin of the SARS-CoV-2 virus. Similar to other outbreaks, the virus derived from a bat-borne virus and most likely was transmitted to humans via another animal in nature or during wildlife trade such as that in food markets. While other explanations such as speculations that SARS-CoV-2 was accidentally released from a laboratory have been proposed, such explanations are not supported by evidence. Conspiracy theories about the virus's origin have also proliferated.

RmYN02 is a bat-derived strain of Severe acute respiratory syndrome–related coronavirus. It was discovered in bat droppings collected between May and October 2019 from sites in Mengla County, Yunnan Province, China. It is the second-closest known relative of SARS-CoV-2, the virus strain that causes COVID-19, sharing 93.3% nucleotide identity at the scale of the complete virus genome. RmYN02 contains an insertion at the S1/S2 cleavage site in the spike protein, similar to SARS-CoV-2, suggesting that such insertion events can occur naturally.

<span class="mw-page-title-main">COVID-19 lab leak theory</span> Proposed theory on the origins of COVID-19

The COVID-19 lab leak theory, or lab leak hypothesis, is the idea that SARS-CoV-2, the virus that caused the COVID-19 pandemic, came from a laboratory. This claim is highly controversial; most scientists believe the virus spilled into human populations through natural zoonosis, similar to the SARS-CoV-1 and MERS-CoV outbreaks, and consistent with other pandemics in human history. Available evidence suggests that the SARS-CoV-2 virus was originally harbored by bats, and spread to humans from infected wild animals, functioning as an intermediate host, at the Huanan Seafood Market in Wuhan, Hubei, China, in December 2019. Several candidate animal species have been identified as potential intermediate hosts. There is no evidence SARS-CoV-2 existed in any laboratory prior to the pandemic, or that any suspicious biosecurity incidents happened in any laboratory.

RacCS203 is a bat-derived strain of severe acute respiratory syndrome–related coronavirus collected in acuminate horseshoe bats from sites in Thailand and sequenced by Lin-Fa Wang's team. It has 91.5% sequence similarity to SARS-CoV-2 and is most related to the RmYN02 strain. Its spike protein is closely related to RmYN02's spike, both highly divergent from SARS-CoV-2's spike.

Rc-o319 is a bat-derived strain of severe acute respiratory syndrome–related coronavirus collected in Little Japanese horseshoe bats from sites in Iwate, Japan. Its has 81% similarity to SARS-CoV-2 and is the earliest strain branch of the SARS-CoV-2 related coronavirus.

DRASTIC is a loose collection of internet activists assembled to investigate the origins of COVID-19, in particular the lab leak theory. Composed of about 30 core members, and primarily organized through the social media website Twitter, DRASTIC was formed in February 2020, at the start of the COVID-19 pandemic. DRASTIC members called for a "full and unrestricted investigation" into the origins of COVID-19, conducted independently of the World Health Organization; most scientists thought that COVID-19 likely had a natural origin, and some considered that a potential lab leak was worth investigating.

Bat coronavirus RpYN06 is a SARS-like betacoronavirus that infects the horseshoe bat Rhinolophus pusillus. It is a close relative of SARS-CoV-2 with a 94.48% sequence identity.

<span class="mw-page-title-main">ORF8</span> Gene that encodes a viral accessory protein

ORF8 is a gene that encodes a viral accessory protein, Betacoronavirus NS8 protein, in coronaviruses of the subgenus Sarbecovirus. It is one of the least well conserved and most variable parts of the genome. In some viruses, a deletion splits the region into two smaller open reading frames, called ORF8a and ORF8b - a feature present in many SARS-CoV viral isolates from later in the SARS epidemic, as well as in some bat coronaviruses. For this reason the full-length gene and its protein are sometimes called ORF8ab. The full-length gene, exemplified in SARS-CoV-2, encodes a protein with an immunoglobulin domain of unknown function, possibly involving interactions with the host immune system. It is similar in structure to the ORF7a protein, suggesting it may have originated through gene duplication.

References

  1. "Hear from top scientist who has spent 'years' working toward a cure for coronaviruses". Msnbc.com. Retrieved 2021-02-13.
  2. Schmidt, Charles (2020-06-09). "For Experts Who Study Coronaviruses, a Grim Vindication". Medscape. Retrieved 2021-02-13.
  3. Rowan Jacobsen, 29 June 2021. Inside the risky bat-virus engineering that links America to Wuhan. MIT Technology Review.
  4. Butler, Declan (2015). "Engineered bat virus stirs debate over risky research". Nature. doi:10.1038/nature.2015.18787. S2CID   182338924.
  5. Lindesmith, Lisa; Moe, Christine; Marionneau, Severine; Ruvoen, Nathalie; Jiang, Xi; Lindblad, Lauren; Stewart, Paul; Lependu, Jacques; Baric, Ralph (2003-04-14). "Human susceptibility and resistance to Norwalk virus infection". Nature Medicine. 9 (5): 548–553. doi:10.1038/nm860. PMID   12692541. S2CID   28663420 . Retrieved 2021-02-13.
  6. Teunis, Peter F.M.; Moe, Christine L.; Liu, Pengbo; E. Miller, Sara; Lindesmith, Lisa; Baric, Ralph S.; Le Pendu, Jacques; Calderon, Rebecca L. (2008). "Norwalk virus: How infectious is it?". Journal of Medical Virology. Wiley. 80 (8): 1468–1476. doi:10.1002/jmv.21237. ISSN   0146-6615. PMID   18551613. S2CID   35718373.
  7. Lindesmith, Lisa C.; Donaldson, Eric F.; Lobue, Anna D.; Cannon, Jennifer L.; Zheng, Du-Ping; Vinje, Jan; Baric, Ralph S. (2008-02-12). "Mechanisms of GII.4 Norovirus Persistence in Human Populations". PLOS Medicine. Journals.plos.org. 5 (2): e31. doi: 10.1371/journal.pmed.0050031 . PMC   2235898 . PMID   18271619.
  8. Graham, Rachel L.; Donaldson, Eric F.; Baric, Ralph S. (2013-11-11). "A decade after SARS: strategies for controlling emerging coronaviruses". Nature Reviews Microbiology. 11 (12): 836–848. doi:10.1038/nrmicro3143. PMC   5147543 . PMID   24217413.
  9. Brian, D. A.; Baric, R. S. (2005). "Coronavirus Genome Structure and Replication". Current Topics in Microbiology and Immunology. Vol. 287. Berlin, Heidelberg: Springer Berlin Heidelberg. pp. 1–30. doi:10.1007/3-540-26765-4_1. ISBN   978-3-540-21494-6. ISSN   0070-217X. PMC   7120446 . PMID   15609507. S2CID   20502390.
  10. Sheahan, Timothy P.; Sims, Amy C.; Leist, Sarah R.; Schäfer, Alexandra; Won, John; Brown, Ariane J.; Montgomery, Stephanie A.; Hogg, Alison; Babusis, Darius; Clarke, Michael O.; Spahn, Jamie E.; Bauer, Laura; Sellers, Scott; Porter, Danielle; Feng, Joy Y.; Cihlar, Tomas; Jordan, Robert; Denison, Mark R.; Baric, Ralph S. (2020-01-10). "Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV". Nature Communications. 11 (1): 222. Bibcode:2020NatCo..11..222S. doi:10.1038/s41467-019-13940-6. PMC   6954302 . PMID   31924756.
  11. Sheahan, Timothy P.; Sims, Amy C.; Graham, Rachel L.; Menachery, Vineet D.; Gralinski, Lisa E.; Case, James B.; Leist, Sarah R.; Pyrc, Krzysztof; Feng, Joy Y.; Trantcheva, Iva; Bannister, Roy; Park, Yeojin; Babusis, Darius; Clarke, Michael O.; Mackman, Richard L.; Spahn, Jamie E.; Palmiotti, Christopher A.; Siegel, Dustin; Ray, Adrian S.; Cihlar, Tomas; Jordan, Robert; Denison, Mark R.; Baric, Ralph S. (2017-06-28). "Broad-spectrum antiviral GS-5734 inhibits both epidemic and zoonotic coronaviruses". Science Translational Medicine. 9 (396): eaal3653. doi: 10.1126/scitranslmed.aal3653 . ISSN   1946-6234. PMC   5567817 . PMID   28659436.
  12. Menachery, Vineet D.; Yount, Boyd L.; Debbink, Kari; Agnihothram, Sudhakar; Gralinski, Lisa E.; Plante, Jessica A.; Graham, Rachel L.; Scobey, Trevor; Ge, Xing-Yi; Donaldson, Eric F.; Randell, Scott H.; Lanzavecchia, Antonio; Marasco, Wayne A.; Shi, Zhengli-Li; Baric, Ralph S. (2015). "A SARS-like cluster of circulating bat coronaviruses shows potential for human emergence". Nature Medicine. 21 (12): 1508–1513. doi:10.1038/nm.3985. PMC   4797993 . PMID   26552008.
  13. Butler, Declan (2015). "Engineered bat virus stirs debate over risky research". Nature. doi:10.1038/nature.2015.18787. S2CID   182338924.
  14. Jacobsen, Rowan (29 June 2021). "Inside the risky bat-virus engineering that links America to Wuhan". MIT Technology Review. Retrieved 3 November 2022.
  15. 1 2 Liu, Shan-Lu; Saif, Linda J.; Weiss, Susan R.; Su, Lishan (1 January 2020). "No credible evidence supporting claims of the laboratory engineering of SARS-CoV-2". Emerging Microbes & Infections. 9 (1): 505–507. doi:10.1080/22221751.2020.1733440. PMC   7054935 . PMID   32102621.
  16. Coronaviridae Study Group of the International Committee on Taxonomy of Viruses (2020). "The species Severe acute respiratory syndrome-related coronavirus : classifying 2019-nCoV and naming it SARS-CoV-2". Nature Microbiology. 5 (4): 536–544. doi:10.1038/s41564-020-0695-z. PMC   7095448 . PMID   32123347. S2CID   211729429.
  17. "News from the National Academy of Sciences". April 26, 2021. Retrieved July 4, 2021. Newly elected members and their affiliations at the time of election are: ... Baric, Ralph S.; William R. Kenan Jr. Distinguished Professor, department of epidemiology, and professor, department of microbiology and immunology, University of North Carolina, Chapel Hill, entry in member directory: "Member Directory: Ralph S. Baric". National Academy of Sciences. Retrieved 2021-11-27.