Real-time kinematic positioning

Last updated
A surveyor uses a GNSS receiver with an RTK solution to accurately locate a parking stripe for a topographic survey. Surveyor Using GNSS Receiver with RTK Solution.jpg
A surveyor uses a GNSS receiver with an RTK solution to accurately locate a parking stripe for a topographic survey.

Real-time kinematic positioning (RTK) is the application of surveying to correct for common errors in current satellite navigation (GNSS) systems. [1] It uses measurements of the phase of the signal's carrier wave in addition to the information content of the signal and relies on a single reference station or interpolated virtual station to provide real-time corrections, providing up to centimetre-level accuracy (see DGPS). [2] With reference to GPS in particular, the system is commonly referred to as carrier-phase enhancement, or CPGPS. [3] It has applications in land surveying, hydrographic surveying, and in unmanned aerial vehicle navigation.

Contents

Background

RTK concept Real time kinematic.svg
RTK concept

The distance between a satellite navigation receiver and a satellite can be calculated from the time it takes for a signal to travel from the satellite to the receiver. To calculate the delay, the receiver must align a pseudorandom binary sequence contained in the signal to an internally generated pseudorandom binary sequence. Since the satellite signal takes time to reach the receiver, the satellite's sequence is delayed in relation to the receiver's sequence. By increasingly delaying the receiver's sequence, the two sequences are eventually aligned.

The accuracy of the resulting range measurement is essentially a function of the ability of the receiver's electronics to accurately process signals from the satellite, and additional error sources such as non-mitigated ionospheric and tropospheric delays, multipath, satellite clock and ephemeris errors. [4]

Carrier-phase tracking

RTK follows the same general concept, but uses the satellite signal's carrier wave as its signal, ignoring the information contained within. RTK uses a fixed base station and a rover to reduce the rover's position error. The base station transmits correction data to the rover.

As described in the previous section, the range to a satellite is essentially calculated by multiplying the carrier wavelength times the number of whole cycles between the satellite and the rover and adding the phase difference. Determining the number of cycles is non-trivial, since signals may be shifted in phase by one or more cycles. This results in an error equal to the error in the estimated number of cycles times the wavelength, which is 19 cm for the L1 signal. Solving this so-called integer ambiguity search problem results in centimeter precision. The error can be reduced with sophisticated statistical methods that compare the measurements from the C/A signals and by comparing the resulting ranges between multiple satellites.

The improvement possible using this technique is potentially very high if one continues to assume a 1% accuracy in locking. For instance, in the case of GPS, the coarse-acquisition (C/A) code, which is broadcast in the L1 signal, changes phase at 1.023 MHz, but the L1 carrier itself is 1575.42 MHz, which changes phase over a thousand times more often. A ±1% error in L1 carrier-phase measurement thus corresponds to a ±1.9 mm error in baseline estimation. [5]

Practical considerations

RTK setup SparkFun RTK Surveying Kit (51635467766).jpg
RTK setup

In practice, RTK systems use a single base-station receiver and a number of mobile units. The base station re-broadcasts the phase of the carrier that it observes, and the mobile units compare their own phase measurements with the one received from the base station. There are several ways to transmit a correction signal from base station to mobile station. The most popular way to achieve real-time, low-cost signal transmission is to use a radio modem, typically in the UHF Band. In most countries, certain frequencies are allocated specifically for RTK purposes. Most land-survey equipment has a built-in UHF-band radio modem as a standard option. RTK provides accuracy enhancements up to about 20 km from the base station. [6]

This allows the units to calculate their relative position to within millimeters, although their absolute position is accurate only to the same accuracy as the computed position of the base station. For RTK with a single base station, accuracy of 8mm + 1ppm (parts per million / 1mm per km) horizontal and 15mm + 1ppm vertical relative to the base station can be achieved, depending on the device. [7]   For example, with a base station 16 km (slightly less than 10 miles) away, relative horizontal error would be 8mm + 16mm = 24mm (slightly less than an inch).

Although these parameters limit the usefulness of the RTK technique for general navigation, the technique is perfectly suited to roles like surveying. In this case, the base station is located at a known surveyed location, often a benchmark, and the mobile units can then produce a highly accurate map by taking fixes relative to that point. RTK has also found uses in autodrive/autopilot systems, precision farming, machine control systems and similar roles.

Network RTK extend the use of RTK to a larger area containing a network of reference stations. [8] Operational reliability and accuracy depend on the density and capabilities of the reference-station network. With network RTK, accuracy of 8mm + 0.5ppm horizontal and 15mm + 0.5 ppm vertical relative to the nearest station can be achieved, depending on the device. [7] For example, with a base station 16 km (slightly less than 10 miles) away, relative horizontal error would be 8mm + 8mm = 16mm (roughly 5/8 of an inch).

A Continuously Operating Reference Station (CORS) network is a network of RTK base stations that broadcast corrections, usually over an Internet connection. Accuracy is increased in a CORS network, because more than one station helps ensure correct positioning and guards against a false initialization of a single base station. [9]

A Virtual Reference Network (VRN) can similarly enhance precision without using a base station, [10] using virtual reference stations (VRS), instead. The concept can help to satisfy this requirement using a network of reference stations. A typical CORS setup consists of a single reference station from which the raw data (or corrections) are sent to the rover receiver (i.e., the user). The user then forms the carrier phase differences (or corrects their raw data) and performs the data processing using the differential corrections. In contrast, GNSS network architectures often make use of multiple reference stations. This approach allows a more precise modeling of distance-dependent systematic errors principally caused by ionospheric and tropospheric refractions, and satellite orbit errors. More specifically, a GNSS network decreases the dependence of the error budget on the distance of nearest antenna.

See also

Related Research Articles

<span class="mw-page-title-main">Global Positioning System</span> American satellite-based radio navigation service

The Global Positioning System (GPS), originally Navstar GPS, is a satellite-based radio navigation system owned by the United States government and operated by the United States Space Force. It is one of the global navigation satellite systems (GNSS) that provide geolocation and time information to a GPS receiver anywhere on or near the Earth where there is an unobstructed line of sight to four or more GPS satellites. It does not require the user to transmit any data, and operates independently of any telephone or Internet reception, though these technologies can enhance the usefulness of the GPS positioning information. It provides critical positioning capabilities to military, civil, and commercial users around the world. Although the United States government created, controls and maintains the GPS system, it is freely accessible to anyone with a GPS receiver.

<span class="mw-page-title-main">GLONASS</span> Russian satellite navigation system

GLONASS is a Russian satellite navigation system operating as part of a radionavigation-satellite service. It provides an alternative to Global Positioning System (GPS) and is the second navigational system in operation with global coverage and of comparable precision.

<span class="mw-page-title-main">Surveying</span> Science of determining the positions of points and the distances and angles between them

Surveying or land surveying is the technique, profession, art, and science of determining the terrestrial two-dimensional or three-dimensional positions of points and the distances and angles between them. These points are usually on the surface of the Earth, and they are often used to establish maps and boundaries for ownership, locations, such as the designated positions of structural components for construction or the surface location of subsurface features, or other purposes required by government or civil law, such as property sales.

Time and frequency transfer is a scheme where multiple sites share a precise reference time or frequency. The technique is commonly used for creating and distributing standard time scales such as International Atomic Time (TAI). Time transfer solves problems such as astronomical observatories correlating observed flashes or other phenomena with each other, as well as cell phone towers coordinating handoffs as a phone moves from one cell to another.

<span class="mw-page-title-main">European Geostationary Navigation Overlay Service</span> System that enhances the accuracy of GPS receivers

This article needs some minor updating as EGNOS is still evolving along time.

<span class="mw-page-title-main">Wide Area Augmentation System</span> System that enhances the accuracy of GPS receivers

The Wide Area Augmentation System (WAAS) is an air navigation aid developed by the Federal Aviation Administration to augment the Global Positioning System (GPS), with the goal of improving its accuracy, integrity, and availability. Essentially, WAAS is intended to enable aircraft to rely on GPS for all phases of flight, including precision approaches to any airport within its coverage area. It may be further enhanced with the Local Area Augmentation System (LAAS) also known by the preferred ICAO term Ground-Based Augmentation System (GBAS) in critical areas.

<span class="mw-page-title-main">Satellite navigation</span> Use of satellite signals for geo-spatial positioning

A satellite navigation or satnav system is a system that uses satellites to provide autonomous geopositioning. A satellite navigation system with global coverage is termed global navigation satellite system (GNSS). As of 2024, four global systems are operational: the United States's Global Positioning System (GPS), Russia's Global Navigation Satellite System (GLONASS), China's BeiDou Navigation Satellite System (BDS), and the European Union's Galileo.

<span class="mw-page-title-main">Differential GPS</span> Enhancement to the Global Positioning System providing improved accuracy

Differential Global Positioning Systems (DGPSs) supplement and enhance the positional data available from global navigation satellite systems (GNSSs). A DGPS can increase accuracy of positional data by about a thousandfold, from approximately 15 metres (49 ft) to 1–3 centimetres.

A positioning system is a system for determining the position of an object in space. Positioning system technologies exist ranging from interplanetary coverage with meter accuracy to workspace and laboratory coverage with sub-millimeter accuracy. A major subclass is made of geopositioning systems, used for determining an object's position with respect to Earth, i.e., its geographical position; one of the most well-known and commonly used geopositioning systems is the Global Positioning System (GPS) and similar global navigation satellite systems (GNSS).

StarFire is a wide-area differential GPS developed by John Deere's NavCom and precision farming groups. StarFire broadcasts additional "correction information" over satellite L-band frequencies around the world, allowing a StarFire-equipped receiver to produce position measurements accurate to well under one meter, with typical accuracy over a 24-hour period being under 4.5 cm. StarFire is similar to the FAA's differential GPS Wide Area Augmentation System (WAAS), but considerably more accurate due to a number of techniques that improve its receiver-end processing.

Augmentation of a global navigation satellite system (GNSS) is a method of improving the navigation system's attributes, such as precision, reliability, and availability, through the integration of external information into the calculation process. There are many such systems in place, and they are generally named or described based on how the GNSS sensor receives the external information. Some systems transmit additional information about sources of error, others provide direct measurements of how much the signal was off in the past, while a third group provides additional vehicle information to be integrated in the calculation process.

<span class="mw-page-title-main">GPS signals</span> Signals broadcast by GPS satellites

GPS signals are broadcast by Global Positioning System satellites to enable satellite navigation. Receivers on or near the Earth's surface can determine location, time, and velocity using this information. The GPS satellite constellation is operated by the 2nd Space Operations Squadron (2SOPS) of Space Delta 8, United States Space Force.

Global Navigation Satellite System (GNSS) receivers, using the GPS, GLONASS, Galileo or BeiDou system, are used in many applications. The first systems were developed in the 20th century, mainly to help military personnel find their way, but location awareness soon found many civilian applications.

OmniSTAR is a satellite-based augmentation system (SBAS) service provider. OmniSTAR correction signals are proprietary, and a subscription must be bought from the OmniSTAR corporation to receive a subscription authorization. OmniSTAR uses geostationary satellites in eight regions covering most of the landmass of each inhabited continent on Earth:

  1. MSV-E, MSV-C, MSV-W
  2. AMSAT
  3. AORWH
  4. AOREH
  5. EUSAT
  6. IORHN
  7. APSAT
  8. OCSAT
<span class="mw-page-title-main">UNSW School of Surveying and Geospatial Engineering</span>

The UNSW School of Surveying and Geospatial Engineering (SAGE), part of the UNSW Faculty of Engineering, was founded in 1970 and disestablished in 2013.

<span class="mw-page-title-main">Error analysis for the Global Positioning System</span> Detail of the global positioning system

The error analysis for the Global Positioning System is important for understanding how GPS works, and for knowing what magnitude of error should be expected. The GPS makes corrections for receiver clock errors and other effects but there are still residual errors which are not corrected. GPS receiver position is computed based on data received from the satellites. Errors depend on geometric dilution of precision and the sources listed in the table below.

GNSS enhancement refers to techniques used to improve the accuracy of positioning information provided by the Global Positioning System or other global navigation satellite systems in general, a network of satellites used for navigation. Enhancement methods of improving accuracy rely on external information being integrated into the calculation process. There are many such systems in place and they are generally named or described based on how the GPS sensor receives the information. Some systems transmit additional information about sources of error, others provide direct measurements of how much the signal was off in the past, while a third group provides additional navigational or vehicle information to be integrated into the calculation process.

A software GNSS receiver is a Global Navigation Satellite System (GNSS) receiver that has been designed and implemented using software-defined radio.

Precise Point Positioning (PPP) is a global navigation satellite system (GNSS) positioning method that calculates very precise positions, with errors as small as a few centimeters under good conditions. PPP is a combination of several relatively sophisticated GNSS position refinement techniques that can be used with near-consumer-grade hardware to yield near-survey-grade results. PPP uses a single GNSS receiver, unlike standard RTK methods, which use a temporarily fixed base receiver in the field as well as a relatively nearby mobile receiver. PPP methods overlap somewhat with DGNSS positioning methods, which use permanent reference stations to quantify systemic errors.

RTCM SC-104 is a communication protocol for sending differential GPS (DGPS) to a GPS receiver from a secondary source like a radio receiver. The standard is named for the Special Committee 104 of the Radio Technical Commission for Maritime Services (RTCM) that created it. The format does not define the source of the messages and has been used with systems as varied as longwave marine radio, communications satellite broadcasts, and internet distribution.

References

  1. Boquet, Guillem; Vilajosana, Xavi; Martinez, Borja (2024). "Feasibility of Providing High-Precision GNSS Correction Data through Non-Terrestrial Networks". IEEE Transactions on Instrumentation and Measurement. 73: 1–15. doi: 10.1109/TIM.2024.3453319 . ISSN   0018-9456.
  2. Wanninger, Lambert. "Introduction to Network RTK". www.wasoft.de. IAG Working Group 4.5.1. Retrieved 14 February 2018.
  3. Mannings, Robin (2008). Ubiquitous Positioning. Artech House. p. 102. ISBN   978-1596931046.
  4. Weiffenbach, G. C. (1967-12-31), "Tropospheric and Ionospheric Propagation Effects on Satellite Radio-Doppler Geodesy", Electromagnetic Distance Measurement, University of Toronto Press, pp. 339–352, doi:10.3138/9781442631823-030, ISBN   9781442631823
  5. "Geo-Positioning, GPS, DGPS, and Positioning Accuracy" (PDF). Archived from the original (PDF) on November 22, 2009. Retrieved 2006-06-20.
  6. RIETDORF, Anette; DAUB, Christopher; LOEF, Peter (2006). "Precise Positioning in Real-Time using Navigation Satellites and Telecommunication". PROCEEDINGS OF THE 3rd WORKSHOP ON POSITIONING, NAVIGATION AND COMMUNICATION. CiteSeerX   10.1.1.581.2400 .
  7. 1 2 Trimble Inc. (October 2020). "Datasheet - Trimble R12 GNSS System - English (US)" (PDF). Trimble. Retrieved March 3, 2024.
  8. Gakstatter, Eric. "RTK Networks – What, Why, Where?" (PDF). www.gps.gov. USSLS/CGSIC Meeting 2009. Retrieved 14 February 2018.
  9. US Department of Commerce, NOAA; US Department of Commerce, NOAA. "National Geodetic Survey - CORS Homepage". www.ngs.noaa.gov. Retrieved 2018-12-11.
  10. "CDOT Survey Manual" (PDF). Colorado Department of Transportation. 2021.