Repair Satellite Prototype

Last updated

RSat-P (Repair Satellite-Prototype)
RSat-P spacecraft by US Navy.png
Diagram of RSat-P manipulating an object with its two robotic arms.
NamesRepair Satellite-Prototype
Mission type Technology demonstration
Operator United States Naval Academy (USNA)
COSPAR ID 2018-104F
SATCAT no. 43854
Spacecraft properties
SpacecraftRSat-P
Spacecraft type CubeSat
Bus 3U CubeSat
Manufacturer United States Naval Academy (USNA)
Launch mass≈ 5 kg (11 lb)
Dimensions10 × 10 × 30 cm (3U)
Start of mission
Launch date16 December 2018, 06:33:00 UTC [1]
Rocket Electron
Launch site Mahia LC-1A
Contractor Rocket Lab
Orbital parameters
Reference system Geocentric orbit
Regime Low Earth orbit
 

RSat-P (Repair Satellite-Prototype) is a microsatellite built by the United States Naval Academy (USNA) in Annapolis, Maryland. The small spacecraft is a 3U CubeSat intended to demonstrate capabilities for minor in-orbit repair of a much larger, conventional spacecraft.

Contents

RSat-P was launched on 16 December 2018 on an Electron rocket as part of NASA's Educational Launch of Nanosatellites (ELaNa) Mission 19. [1]

Overview

It has been determined that about 1/3 of all commercial spacecraft failures originate on their solar panel deployment, wiring, sunshield, or antenna deployment, [2] so RSat-P is set to test the potential of a CubeSat to fix such small-scale large-impact failures. [2] Potential deployments include an RSat embedded in its host spacecraft, where it uses its claws to crawl along the failed spacecraft to diagnose and repair. Alternatively, an RSat could be released from a nearby constellation spacecraft in combination with a propulsive BRICSat unit to reach the failed spacecraft. [2]

While the RSat may be limited to diagnostics and minor repairs, more complex servicing would be performed by a large spacecraft called Robotic Servicing of Geosynchronous Satellites (RSGS), that is being developed by the Defense Advanced Research Projects Agency (DARPA). [2]

The team includes Edward Hanlon, Benjamin Keegan and Morgan Lange, Jacob Pittman, Gavin Roser and Dakota Wenberg; the adviser is Jin Kang. [3] In 2017, the team was awarded the Secretary of the Navy's Innovation Scholar Award, at a ceremony at The Pentagon, for their research project. [3] The first robotic arm prototype was scheduled for a launch in early 2017, but was postponed for December 2018. [4]

Description

RSat-P is a small 3U CubeSat that is part of the Autonomous On-orbit Diagnostic System (AMODS) being developed by the U.S. Naval Academy satellite laboratory to demonstrate diagnostic and repair capabilities by validating some key robotic functions while in orbit. [3] [5] [4] [6] AMODS consists of two main components: RSat and BRICSat, which acts as the propulsive unit for RSat, but for the prototype RSat-P mission, the satellite will not have propulsion. [2] The two robotic arms will be moved through some test patterns to simulate the repair of a damaged spacecraft. [1]

The combined mission of an RSat with BRICSat is called "The Modified BRICSat-RSat Space Experiment" (MBSE), which will be launched some time after the validation of the robotic arms on RSat-P. [2] The electric thrusters on BRICSat are called "Micro-Cathode Arc Thruster" (μCAT), developed by the George Washington University. [2] [7]

Robotic arms

RSat-P represents the first time robotic arms have been installed on such a small platform. [3] The robotic arms are made of 3D printed carbon fiber, they have 7 degrees-of-freedom each, are 60 cm (24 in) long, and have a total arm-span of 1.5 m (4 ft 11 in). RSat-P has a CMOS camera attached at the center of the body to monitor the accuracy of the arm movements, and there are two more cameras fitted to the claws, enabling the satellite to provide on-demand diagnostic pictures of itself. [8]

Activities

As of 2016 The main tasks to demonstrate in this mission include: [2] [9]

See also

Result of in-orbit tests

It was planned that "two robotic arms that will be moved through one or more test patterns to simulate the repair of a damaged spacecraft." [1]

Related Research Articles

CubeSat 10×10×10 cm nanosatellites

A CubeSat is a type of miniaturized satellite for space research that is made up of multiple cubic modules of 10 cm × 10 cm × 10 cm size. CubeSats have a mass of no more than 1.33 kilograms (2.9 lb) per unit, and often use commercial off-the-shelf (COTS) components for their electronics and structure. CubeSats are put into orbit by deployers on the International Space Station, or launched as secondary payloads on a launch vehicle. As of August 2021, more than 1600 CubeSats have been launched and more than 90 have been destroyed in launch failures.

Micro-Space was an aerospace corporation based in Denver, Colorado, founded in February 1977 by Richard P. Speck under the name Spectron Instrument Corporation. The corporation changed its name to "Micro-Space, Inc." in 1998. It was dissolved in 2011, following the death of the founder.

Orbital Express US project to autonomously service satellites in orbit ~2007

Orbital Express was a space mission managed by the United States Defense Advanced Research Projects Agency (DARPA) and a team led by engineers at NASA's Marshall Space Flight Center (MSFC). The Orbital Express program was aimed at developing "a safe and cost-effective approach to autonomously service satellites in orbit". The system consisted of two spacecraft: the ASTRO servicing satellite, and a prototype modular next-generation serviceable satellite; NEXTSat. The mission launched from Cape Canaveral Air Force Station on 8 March 2007, aboard an Atlas V expendable launch vehicle. The launch was part of the United States Air Force Space Test Program STP-1 mission.

The United States Naval Academy (USNA) Small Satellite Program (SSP) was founded in 1999 to actively pursue flight opportunities for miniature satellites designed, constructed, tested, and commanded or controlled by Midshipmen. The Naval Academy's aerospace laboratory facilities are some of the most advanced and extensive in the country. These facilities include structures labs, propulsion and rotor labs, simulation labs, wind tunnels with flow velocities ranging from subsonic to supersonic, computer labs, and the Satellite Ground Station. The SSP provides funds for component purchase and construction, travel in support of testing and integration, coordination with The US Department of Defense or National Aeronautics and Space Administration (NASA) laboratories or with universities for collaborative projects, and guides Midshipmen through the Department of Defense (DoD) Space Experiments Review Board (SERB) flight selection process.

PharmaSat

PharmaSat was a nanosatellite developed by NASA Ames Research Center which measured the influence of microgravity upon yeast resistance to an antifungal agent. As a follow on to the GeneSat-1 mission, the Ames Small Spacecraft Division conducted the PharmaSat mission in collaboration with industry and local universities.

O/OREOS NASA nanosatellite with 2 astrobiology experiments on board

The O/OREOS is an NASA automated CubeSat nanosatellite laboratory approximately the size of a loaf of bread that contains two separate astrobiology experiments on board. Developed by the Small Spacecraft Division at NASA Ames Research Center, the spacecraft was successfully launched as a secondary payload on STP-S26 led by the Space Test Program of the United States Air Force on a Minotaur IV launch vehicle from Kodiak Island, Alaska on 20 November 2010, at 01:25:00 UTC.

Docking and berthing of spacecraft Joining of two or more space vehicles

Docking and berthing of spacecraft is the joining of two space vehicles. This connection can be temporary, or partially permanent such as for space station modules.

Space Infrastructure Servicing (SIS) is a spacecraft concept being developed by Canadian aerospace firm MDA to operate as a small-scale in-space refueling depot for communication satellites in geosynchronous orbit.

Space tether missions

A number of space tethers have been deployed in space missions. Tether satellites can be used for various purposes including research into tether propulsion, tidal stabilisation and orbital plasma dynamics.

Robotic Refueling Mission

The Robotic Refueling Mission (RRM) is a NASA technology demonstration mission with equipment launches in both 2011 and 2013 to increase the technological maturity of in-space rocket propellant transfer technology by testing a wide variety of potential propellant transfer hardware, of both new and existing satellite designs.

Colorado Student Space Weather Experiment

Colorado Student Space Weather Experiment (CSSWE) was the sixth National Science Foundation sponsored CubeSat mission. It was built by students at the University of Colorado at Boulder with advising from professionals at the Laboratory for Atmospheric and Space Physics. The CSSWE mission was a joint effort by the University of Colorado's Department of Aerospace Engineering Sciences and Laboratory for Atmospheric and Space Physics. The mission principal investigator was Prof. Xinlin Li, and the Co-PIs are Prof. Scott Palo and Dr. Shri Kanekal. The project manager for the project was Dr. Lauren Blum, the system engineer was Dr. David Gerhardt, and the instrument scientist was Dr. Quintin Schiller.

Technology Education Satellite (TechEdSat) is a class of CubeSats built by San Jose State University and University of Idaho students in partnership with NASA's Ames Research Center. These satellites have tested communication technology for smallsats, and have contributed to the development of the Small Payload Quick Return (SPQR) concept.

Space Tethered Autonomous Robotic Satellite II or STARS-II, was a nanosatellite built by Japan's Kagawa University to test an electrodynamic tether in low Earth orbit, a follow-on to the STARS mission.

Nanoracks CubeSat Deployer Device to deploy CubeSats into orbit from the International Space Station

The Nanoracks CubeSat Deployer (NRCSD) is a device to deploy CubeSats into orbit from the International Space Station (ISS).

Miniature X-ray Solar Spectrometer CubeSat

The Miniature X-ray Solar Spectrometer (MinXSS) CubeSat was the first launched National Aeronautics and Space Administration Science Mission Directorate CubeSat with a science mission. It was designed, built, and operated primarily by students at the University of Colorado Boulder with professional mentorship and involvement from professors, scientists, and engineers in the Aerospace Engineering Sciences department and the Laboratory for Atmospheric and Space Physics, as well as Southwest Research Institute, NASA Goddard Space Flight Center, and the National Center for Atmospheric Research's High Altitude Observatory. The mission principal investigator is Dr. Thomas N. Woods and co-investigators are Dr. Amir Caspi, Dr. Phil Chamberlin, Dr. Andrew Jones, Rick Kohnert, Professor Xinlin Li, Professor Scott Palo, and Dr. Stanley Solomon. The student lead was Dr. James Paul Mason, who has since become a Co-I for the second flight model of MinXSS.

Team Miles is a type of nanosatellite called 6U CubeSat that will demonstrate navigation in deep space using innovative plasma thrusters. It will also test a software-defined radio operating in the S-band for communications from about 4 million kilometers from Earth. Team Miles will be one of ten CubeSats to be carried with the Artemis 1 mission into a heliocentric orbit in cislunar space on the maiden flight of the Space Launch System (SLS) and the Orion spacecraft, scheduled to launch in 2022.

CubeSail is a low-cost spacecraft propulsion demonstration mission using two identical 1.5U CubeSat satellites to deploy a 260 m (850 ft) long, 20 m2 (220 sq ft) solar sail ribbon between them. This mission is a first in a series of increasingly complex demonstrations leading up to a full-scale UltraSail heliogyro by the University of Illinois and CU Aerospace.

CAPSTONE (spacecraft) NASA satellite to test the Lunar Gateway orbit

Cislunar Autonomous Positioning System Technology Operations and Navigation Experiment (CAPSTONE) is a lunar orbiter that will test and verify the calculated orbital stability planned for the Gateway space station. The spacecraft is a 12-unit CubeSat that will also test a navigation system that will measure its position relative to NASA's Lunar Reconnaissance Orbiter (LRO) without relying on ground stations.

BRICSat-2

BRICSat-2, or USNAP1, is an experimental amateur radio satellite from the United States Naval Academy that was developed in collaboration with George Washington University. BRICSat-2 is the successor to BRICSat-P. AMSAT North America's OSCAR number administrator assigned number 103 to this satellite; in the amateur radio community it is therefore also called Navy-OSCAR 103, short NO-103.

SpaceX CRS-23 Commercial Resupply Service mission to the International Space Station

SpaceX CRS-23, also known as SpX-23, was a Commercial Resupply Service mission to the International Space Station, successfully launched on 29 August 2021 and docking the following day. The mission was contracted by NASA and was flown by SpaceX using the Cargo Dragon C208. This was the third flight for SpaceX under NASA's CRS Phase 2 contract awarded in January 2016. It was the second mission for this reusable capsule.

References

  1. 1 2 3 4 Rocket Lab Electron launches ELaNa-XIX mission Thomas Burghardt, NASASpaceFlight.com 15 December 2018
  2. 1 2 3 4 5 6 7 8 RSat Flight Qualification and Test Results for Manipulable Robotic Appendages Installed on 3U CubeSat Platform, D.L. Wenberg, B.P. Keegan, M.E. Lange, Edward A.S. Hanlon, et al. United States Naval Academy 30th Annual AIAA//USU Conference on Small Satellites 2015
  3. 1 2 3 4 AMODS - Mission United States Naval Academy (USNA) Accessed on 16 December 2018 PD-icon.svgThis article incorporates text from this source, which is in the public domain .
  4. 1 2 State of the Art of Small Spacecraft Technology: Structures, Materials and Mechanisms Bruce Yost, NASA Accessed on 16 December 2018 PD-icon.svgThis article incorporates text from this source, which is in the public domain .
  5. RSat-P (Repair Satellite-Prototype), Gunter Krebs, Gunter's Space Page, Accessed on 16 December 2018
  6. Leveraging the Autonomous Mobile On-orbit Diagnostic System to Initiate a Doctrinal Shift in Spacecraft Operations E.A. Hanlon, B.P. Keegan, M.E. Lange, J.K. Pittman, D.L. Wenberg, J.G. Roser, J.S. Kang; United States Naval Academy, June 2017 PD-icon.svgThis article incorporates text from this source, which is in the public domain .
  7. μCAT Micro-Propulsion Solution for Autonomous Mobile on Orbit Diagnostic System Jonathan Kolbeck, Joseph Lucas, et al.; 30th Annual AIAA//USU Conference on Small Satellites, 2015
  8. RSat-P Jin Kang, Research and Projects United States Naval Academy (USNA) Accessed on 16 December 2018 PD-icon.svgThis article incorporates text from this source, which is in the public domain .
  9. Design Features and Flight Results for the Autonomous Mobile On-orbit Diagnostic System (AMODS) Edward A. Hanlon AIAA SPACE 2016 doi : 10.2514/6.2016-5618