Rice hoja blanca virus

Last updated

Rice hoja blanca virus (RHBV), meaning "white leaf rice virus", is a plant virus in the family Phenuiviridae. RHBV causes Hoja blanca disease (HBD), which affects the leaves of the rice plant Oryza sativa , stunting the growth of the plant or killing it altogether. RHBV is carried by an insect vector, Tagosodes orizicolus, a type of planthopper. The virus is found in South America, Mexico, throughout Central America, the Caribbean region, and the southern United States. In South America, the disease is endemic to Colombia, Venezuela, Ecuador, Peru, Suriname, French Guiana and Guyana.

Contents

Virology

Rice hoja blanca virus (RHBV)
Virus classification
Group:
Group V ((−)ssRNA)
Order:
Family:
Genus:
Species:
Rice hoja blanca tenuivirus

Viral Classification

RHBV is a single stranded, negative-sense RNA virus of the genus Tenuivirus , derived from the Latin "tenui", meaning thin or weak. This comes from the nature of Tenuiviruses to form thin, filamentous viral particles. Other viruses in the genus Tenuivirus include maize stripe virus (MSV), rice stripe virus (RSV), and rice grassy stunt virus (RGSV). While RHBV and other Tenuiviruses have single stranded RNA genomes, it is interesting to note that examination of non-denaturing gel electrophoresis performed with Tenuiviruses has yielded both single stranded and double stranded RNA. [1] Because it is unlikely that both single stranded and double stranded RNA's are encapsidated within the viral ribonucleoprotein, it is theorized that the double stranded RNA sometimes present in gel electrophoresis results comes from the annealing in vitro of single stranded RNA's that possess opposite polarities. [2]

Viral Structure

Previous to 1982, RHBV was theorized to be a part of the Closterovirus group, due to the presence of 8-10 nanometer particles observed in the cells of plants affected by HBV. Such particles are often found in cells affected by Closteroviruses. However, further research into the subject yielded results indicating that RHBV was more similar to viruses in the newly formed Tenuivirus group. [3] The particle morphology of Tenuiviruses is largely consistent across the genus, and RHBV is no exception. RHBV forms fine, thin, filamentous non-eveloped nucleocapsid particles that vary in length and range from 3 nanometers to 8 nanometers in width. [4] Examination of viral particles from infected plant cells indicates that they are sometimes configured in tight, heliocentric spiral formations. However, RHBV ribonucleoproteins tend to be mostly circular in formation, as are many other members of the genus Tenuivirus. [5]

Genome

RHBV possesses a tetrapartite genomic structure, meaning that the RHBV genome is composed of four separate RNA components, named RNA1-RNA4, and are ordered in decreasing base pair size. [6] These components encode for the enzyme and various proteins that make up the virion. RNA1 is 8,999 base pairs long and is the first and largest segment of the genome, encoding for the viral RNA-dependent RNA polymerase, which is used by the virus to help synthesize a complementary RNA strand. RNA2 (3,620 base pairs) encodes for the first nonstructural protein (NS2) and a membrane glycoprotein. RNA3 (2,299 base pairs) encodes for another nonstructural protein (NS3) and the nucleocapsid protein. RNA4 (1,998 base pairs) encodes for the major nonstructural protein and another minor nonstructural protein, NS4. RNA2-RNA4 use an ambisense coding strategy, meaning those RNA segments contain both negative sense and positive sense sections, in order to code for two proteins. [6]

Replication Cycle

In Insects

RHBV is propagative, meaning it infects both host plants and its insect vector. Tagosodes orizicolus (changed from Sogatodes orizycola in 1993), is a species of planthopper, and the known common vector of RHBV. [7] It belongs to the family Delphacidae, as do the planthopper vectors of other Tenuiviruses. T. orizicolus feed in the phloem of target plants, giving them the unique ability to infect plants without outright destroying plant tissue, which in turn promotes successful infection by RHBV. However, plants can be susceptible to "hopper burn", where excessive feeding cause an affected plant to dry up. Infection in T. orizicolus begins when a planthopper feeds on an infected plant. After the virus is acquired by the host, it will incubate for a period ranging for 4–31 days. The infected planthopper can then transmit the virus to new plants it feeds on. Vertical transmission is possible transovarially from infected females to their offspring [8] and from males to their progeny, although RHBV is the only Tenuivirus known to be paternally transmitted. [9] Transmission efficiency is variable between different populations of T. orizicolus, and can be selectively bred to 100% efficiency over controlled generations. [10]

In Plants

Plant infection for RHBV is relatively standard for negative-sense single stranded RNA plant viruses, consisting of entering the cell, using an RNA-dependent RNA polymerase to convert to positive-sense RNA, and using the host's cellular machinery to produce viral proteins and genomes. Research shows that RHBV likely uses "cap-snatching", a technique where the virus cleaves and uses the 5' cap of the host cell, in order to begin synthesis of viral mRNA. [11] However, there are some unique qualities possessed by RHBV. The NS3 protein encoded by RNA3 has been shown to suppress RNA silencing in both rice and insect vectors, contributing to the successful propagation of the virus. Research shows that RNA3 interferes with the cell's siRNA's by binding to them, which in turn suppresses their ability to assist in RNA silencing. [12] Also interesting to note is that NS4 is synthesized in large amounts in RHBV infected plant cells. [13] In the rice stripe virus genome, research shows that it is likely that RSV NS4 is a movement protein that accumulates adjacent to and inside of cell walls and helps move viruses or infectious material between plant cells. [14] Due to similar accumulation of NS4 in RHBV infected cells, it is possible that RHBV NS4 serves a similar purpose, although this has not yet been explicitly confirmed by experimentation.

RHBV Symptoms

The symptoms caused by RHBV are seen across the whole spectrum of the infected plant, and can be different depending on the specific rice strain and the age of the plant upon infection. Plant tissues that are already mature upon infection remain symptomless, while immature tissues display a variety of symptoms. Approximately 4 days after infection, cream-colored spots ranging in size from 2-5 millimeters begin to appear on immature leaves. Eventually, infected leaves suffer chlorosis and the spots turn white as the leaves mature, giving the virus its namesake. As time goes on, chlorotic spots increase and form stripes, with entire leaves eventually succumbing to infection and becoming completely chlorotic. RHBV infection is systemic to the plant, and subsequent leaves will emerge displaying either heavy stripes or complete chlorosis. Tillers infected by RHBV will be stunted compared to normal, non-infected tillers. The panicles of infected tillers may be sterile, and often have malformed or discolored grains. Root size and number will reduce, with the roots eventually turning brown and dying completely. [15]

RHBV can also cause symptoms in its insect vector, infecting various organs and glands in the planthopper. These infections can have mild to severe results on the host, leading to organ failure, respiratory and digestive track failure, and muscle atrophy Such infections can possibly reduce the fertility or longevity of an infected female. [16]

History and Impact

RHBV was first described biologically in the 1980s, although it had been destroying rice crops in the Americas for almost half a century before scientists were able to understand it and identify it as a viral agent. The first hint that HBD was caused by a virus came from the cyclical nature of its epidemics and their association with the planthopper T. orizicolis. Agricultural records indicate that the disease was first observed in the Cauca Valley area of Colombia in 1935. [17] Within approximately 3 decades, RHBV and the associated HBD were present in various South American countries and had crossed the Caribbean sea to Cuba and the southern Florida peninsula. It has since been affecting rice crops in many countries located throughout both tropical and subtropical America, generating moderate to severe yield losses. In 1965, yield losses in Cuba and Venezuela ranged between 25-50%. In 1981, serious epidemics in the countries of Colombia, Ecuador, and Venezuela occurred, causing yield losses of up to 100% in the worse cases. [15]

Similarities to Other Viruses

RHBV is most closely related to Echinocloa hoja blanca virus (EHBV), another member of the Tenuivirus genome. [7] Proteins in both the RHBV genome and the EHBV genome have been shown to be antigenically related and to possess a high degree of similarity. However, the two viruses have separate insect vectors, with EHBV infecting Tagosodes cubanus and RHBV infecting T. orizicolis. Nucleotide sequence similarity is around 80-85% in coding regions, and only 46-53% in non-coding regions. [18]

Related Research Articles

<i>Cauliflower mosaic virus</i> species of virus

Cauliflower mosaic virus (CaMV) is a member of the genus Caulimovirus, one of the six genera in the family Caulimoviridae, which are pararetroviruses that infect plants. Pararetroviruses replicate through reverse transcription just like retroviruses, but the viral particles contain DNA instead of RNA.

Parvovirus genus of viruses

Parvovirus is the common name applied to all the viruses in the Parvoviridae taxonomic family. Parvovirus can also be used specifically for members of one of the two Parvoviridae subfamilies: Parvovirinae, which infect vertebrate hosts, and Densovirinae, which infect invertebrate hosts, are more commonly referred to as densoviruses. In subfamily Parvovirinae there are eight genera, containing a total of 58 recognized species, while in subfamily Densovirinae there are 5 genera and a total of 21 species.

A satellite is a subviral agent composed of nucleic acid that depends on the co-infection of a host cell with a helper virus for its replication.

Plant virus Virus that affects plants

Plant viruses are viruses that affect plants. Like all other viruses, plant viruses are obligate intracellular parasites that do not have the molecular machinery to replicate without a host. Plant viruses can be pathogenic to higher plants.

Arenavirus genus of viruses

An arenavirus is a bisegmented ambisense RNA virus that is a member of the family Arenaviridae. These viruses infect rodents and occasionally humans. A class of novel, highly divergent arenaviruses, properly known as reptarenaviruses, have also been discovered which infect snakes to produce inclusion body disease. At least eight arenaviruses are known to cause human disease. The diseases derived from arenaviruses range in severity. Aseptic meningitis, a severe human disease that causes inflammation covering the brain and spinal cord, can arise from the lymphocytic choriomeningitis virus. Hemorrhagic fever syndromes, including Lassa fever, are derived from infections such as Guanarito virus, Junin virus, Lassa virus, Lujo virus, Machupo virus, Sabia virus, or Whitewater Arroyo virus. Arenaviruses are divided into two groups: the Old World and the New World viruses. The differences between these groups are distinguished geographically and genetically. Because of the epidemiological association with rodents, some arenaviruses and bunyaviruses are designated as roboviruses.

<i>Alphavirus</i> Genus of Viruses

Alphavirus is a genus of RNA viruses, the sole genus in the Togaviridae family. Alphaviruses belong to group IV of the Baltimore classification of viruses, with a positive-sense, single-stranded RNA genome. There are 31 alphaviruses, which infect various vertebrates such as humans, rodents, fish, birds, and larger mammals such as horses, as well as invertebrates. Transmission between species and individuals occurs mainly via mosquitoes, making the alphaviruses a member of the collection of arboviruses – or arthropod-borne viruses. Alphavirus particles are enveloped, have a 70 nm diameter, tend to be spherical, and have a 40 nm isometric nucleocapsid.

Tenuivirus is a plant virus genus belonging to Phenuiviridae family in the order Bunyavirales, of which the type member is Rice stripe virus. Other members of this genera include Maize stripe virus, Rice hoja blanca virus, and Iranian wheat strip virus. These plant viruses cause diseases in their host plants. Typical symptoms are chlorotic stripes on the affected leaves. This group of viruses also make viral inclusions in infected cells which can be diagnostic.

Turnip crinkle virus (TCV) is a plant pathogenic virus of the family Tombusviridae. It was first isolated from turnip. TCV is a small, single-stranded, positive-sense RNA virus. It has been shown to infect various types of plant species including the common plant model, Arabidopsis thaliana. Its gRNA encodes for five proteins: p28 and p88 (replication), p8 and p9 (movement) and CP. The structure of the virus was determined to 3.2 Ångstrom resolution using x-ray crystallography in 1986. It is structurally quite similar to the tomato bushy stunt virus.

Rice stripe virus is an RNA plant pathogen of the genus Tenuivirus. It is prevalent in Japan, China, and Korea and can infect plants of the family Poaceae, which include wheat and corn. Damage from this disease causes major reductions in rice crop yield every year.

Virus Small non-cellular infectious agent that only replicates in cells

A virus is a submicroscopic infectious agent that replicates only inside the living cells of an organism. Viruses can infect all types of life forms, from animals and plants to microorganisms, including bacteria and archaea. Since Dmitri Ivanovsky's 1892 article describing a non-bacterial pathogen infecting tobacco plants, and the discovery of the tobacco mosaic virus by Martinus Beijerinck in 1898, about 5,000 virus species have been described in detail, of the millions of types of viruses in the environment. Viruses are found in almost every ecosystem on Earth and are the most numerous type of biological entity. The study of viruses is known as virology, a subspeciality of microbiology.

Picobirnavirus is a genus of dsRNA viruses, the only genus in the family Picobirnaviridae. Although amniotes, especially mammals, were thought to serve as hosts, it has been recently suggested that these viruses might infect bacteria and possibly some other invertebrates. There are currently only two species in this genus including the type species human picobirnavirus. Associated symptoms include gastroenteritis in animals and humans, though the disease association is unclear.

Epizootic hemorrhagic disease virus, often abbreviated to EHDV, is a species of the genus Orbivirus, a member of the family Reoviridae. It is the causative agent of epizootic hemorrhagic disease, an acute, infectious, and often fatal disease of wild ruminants. In North America, the most severely affected ruminant is the white-tailed deer, although it may also infect mule deer, black-tailed deer, elk, bighorn sheep, and pronghorn antelope. It is often mistakenly referred to as “bluetongue virus” (BTV), another Orbivirus that like EHDV causes the host to develop a characteristic blue tongue due to systemic hemorrhaging and lack of oxygen in the blood. Despite showing clinical similarities, these two viruses are genetically distinct.

Negative-sense single-stranded RNA virus type of virus according to Baltimore

A negative-sense single-stranded RNA virus is a virus that uses negative sense, single-stranded RNA as its genetic material. Single stranded RNA viruses are classified as positive or negative depending on the sense or polarity of the RNA. The negative viral RNA is complementary to the mRNA and must be converted to a positive RNA by RNA polymerase before translation. Therefore, the purified RNA of a negative sense virus is not infectious by itself, as it needs to be converted to a positive sense RNA for replication. These viruses belong to Group V on the Baltimore classification.

Nucleorhabdovirus is a genus of viruses in the family Rhabdoviridae, order Mononegavirales.. Planthoppers and plants serve as natural hosts.

<i>West Nile virus</i> Species of virus

West Nile virus (WNV) is a single-stranded RNA virus that causes West Nile fever. It is a member of the family Flaviviridae, specifically from the genus Flavivirus, which also contains the Zika virus, dengue virus, and yellow fever virus. West Nile virus is primarily transmitted by mosquitoes, mostly species of Culex. The primary hosts of WNV are birds, so that the virus remains within a "bird–mosquito–bird" transmission cycle.

Positive-sense single-stranded RNA virus Class of viruses in the Baltimore classification

A positive-sense single-stranded RNA virus is a virus that uses positive sense single stranded RNA as its genetic material. Single stranded RNA viruses are classified as positive or negative depending on the sense or polarity of the RNA. The positive-sense viral RNA genome can serve as messenger RNA and can be translated into protein in the host cell. Positive-sense ssRNA viruses belong to Group IV in the Baltimore classification. Positive-sense RNA viruses account for a large fraction of known viruses, including many pathogens such as the hepacivirus C, West Nile virus, dengue virus, SARS and MERS coronaviruses, and SARS-CoV-2 as well as less clinically serious pathogens such as the rhinoviruses that cause the common cold.

Mammalian orthoreovirus (MRV) is a double stranded RNA virus. It is a part of the family Reoviridae, as well as the subfamily Spinareovirinae. As seen in the name, the Mammalian Ortheoreovirus infects numerous mammalian species and vertebrates which serve as natural hosts. Some diseases that occur as a result of this virus or are associated with this virus include mild upper respiratory illness, and gastrointestinal illness. Examples of these are: upper respiratory tract syndromes, gastroenteritis, biliary atresia, obstructive hydrocephalus, jaundice, alopecia, conjunctivitis, and ‘oily hair’ associated with steatorrhea.

Yokose virus (YOKV) is in the genus Flavivirus of the family Flaviviridae. Flaviviridae are often found in arthropods, such as mosquitoes and ticks, and may also infect humans. The genus Flavivirus includes over 50 known viruses, including Yellow Fever, West Nile Virus, Zika Virus, and Japanese Encephalitis. Yokose virus is a new member of the Flavivirus family that has only been identified in a few bat species. Bats have been associated with several emerging zoonotic diseases such as Ebola and SARS.

<i>Sepik virus</i> Mosquito transmitted virus endemic to Papua New Guinea

Sepik virus (SEPV) is an arthropod-borne virus (arbovirus) of the genus Flavivirus and family Flaviviridae. Flaviviridae is one of the most well characterized viral families, as it contains many well-known viruses that cause diseases that have become very prevalent in the world, like Chikungunya virus and Dengue virus. The genus Flavivirus is one of the largest viral genera and encompasses over 50 viral species, including tick and mosquito borne viruses like Yellow fever virus and West Nile virus. Sepik virus is much less well known and has not been as well-classified as other viruses because it has not been known of for very long. Sepik virus was first isolated in 1966 from the mosquito Mansoniaseptempunctata, and it derives its name from the Sepik River area in Papua New Guinea, where it was first found. The geographic range of Sepik virus is limited to Papua New Guinea, due to its isolation.

References

  1. de Miranda, J.R.; Espinoza, A.M.; Hull, R. (January 1996). "Rapid, small scale purification of rice hoja blanca and Echinochloa hoja blanca tenuivirus ribonucleoprotein". Journal of Virological Methods. 56 (1): 109–113. doi:10.1016/0166-0934(95)01952-9. PMID   8690758.
  2. Falk, B. W. (1984). "Identification of Single- and Double-Stranded RNAs Associated with Maize Stripe Virus". Phytopathology. 74 (8): 909. doi:10.1094/phyto-74-909. ISSN   0031-949X.
  3. Morales, Francisco J. (1983). "Association of Spiral Filamentous Viruslike Particles with Rice Hoja Blanca". Phytopathology. 73 (7): 971. doi:10.1094/phyto-73-971. ISSN   0031-949X.
  4. Gingery, Roy E. (1988), "The Rice Stripe Virus Group", The Plant Viruses, Springer US, pp. 297–329, doi:10.1007/978-1-4684-7038-3_10, ISBN   9781468470406
  5. Espinoza, Ana M.; Hernández, Miriam; Pereira, R.; Falk, B.; Medina, V. (December 1992). "In situ immunogold labeling analysis of the rice hoja blanca virus nucleoprotein and major noncapsid protein". Virology. 191 (2): 619–627. doi:10.1016/0042-6822(92)90237-j. ISSN   0042-6822. PMID   1448918.
  6. 1 2 Jimenez, Jenyfer; Carvajal-Yepes, Monica; Leiva, Ana Maria; Cruz, Maribel; Romero, Luz Elena; Bolaños, Carmen A.; Lozano, Ivan; Cuellar, Wilmer J. (2018-02-15). "Complete Genome Sequence of Rice hoja blanca tenuivirus Isolated from a Susceptible Rice Cultivar in Colombia". Genome Announcements. 6 (7): e01490-17. doi:10.1128/genomea.01490-17. ISSN   2169-8287. PMC   5814491 . PMID   29449400.
  7. 1 2 Morales, F (2010-08-01). "Rice hoja blanca: a complex plant-virus-vector pathosystem". CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources. 5 (43). doi:10.1079/pavsnnr20105043. hdl: 10568/44059 . ISSN   1749-8848.
  8. Shikata, Eishiro; Galvez-E, Guillermo E. (December 1969). "Fine flexuous threadlike particles in cells of plants and insect hosts infected with rice hoja blanca virus". Virology. 39 (4): 635–641. doi:10.1016/0042-6822(69)90002-6. ISSN   0042-6822. PMID   5358822.
  9. Zeigler, R. S. (1990). "Genetic Determination of Replication of Rice Hoja Blanca Virus Within Its Planthopper Vector,Sogatodes oryzicola". Phytopathology. 80 (6): 559. doi:10.1094/phyto-80-559. ISSN   0031-949X.
  10. Hendrick, R. D.; Everett, T. R.; Lamey, H. A.; Showers, W. B. (1965-06-01). "An Improved Method of Selecting and Breeding for Active Vectors of Hoja Blanca Virus1". Journal of Economic Entomology. 58 (3): 539–542. doi:10.1093/jee/58.3.539. ISSN   1938-291X.
  11. Ramirez, B.-C.; Macaya, G.; Calvert, L. A.; Haenni, A.-L. (1992-06-01). "Rice hoja blanca virus genome characterization and expression in vitro". Journal of General Virology. 73 (6): 1457–1464. doi: 10.1099/0022-1317-73-6-1457 . ISSN   0022-1317. PMID   1607863.
  12. Hemmes, H.; Lakatos, L.; Goldbach, R.; Burgyan, J.; Prins, M. (2007-07-01). "The NS3 protein of Rice hoja blanca tenuivirus suppresses RNA silencing in plant and insect hosts by efficiently binding both siRNAs and miRNAs". RNA. 13 (7): 1079–1089. doi:10.1261/rna.444007. ISSN   1355-8382. PMC   1894927 . PMID   17513697.
  13. Nguyen, M.; Kormelink, R.; Goldbach, R.; Haenni, A.-L. (November 1999). "Infection of barley protoplasts with rice hoja blanca tenuivirus". Archives of Virology. 144 (11): 2247–2252. doi:10.1007/s007050050639. ISSN   0304-8608. PMID   10603179.
  14. Xiong, Ruyi; Wu, Jianxiang; Zhou, Yijun; Zhou, Xueping (April 2009). "Characterization and subcellular localization of an RNA silencing suppressor encoded by Rice stripe tenuivirus". Virology. 387 (1): 29–40. doi:10.1016/j.virol.2009.01.045. ISSN   0042-6822. PMID   19251298.
  15. 1 2 "Plantwise - Home". www.plantwise.org. Retrieved 2019-03-13.
  16. Jennings, Peter R. (1971). "The Effect of the Hoja Blanca Virus on its Insect Vector". Phytopathology. 61 (2): 142. doi:10.1094/phyto-61-142. ISSN   0031-949X.
  17. Nance, Nellie W. (1958). Index to Plant disease reporter supplements 243-248, 1957 /. Beltsville, Md.: Crops Research Division, Agricultural Research Service, United States Department of Agriculture. doi:10.5962/bhl.title.85781.
  18. de Miranda, Joachim R.; Muñoz, Miguel; Wu, Ray; Espinoza, Ana M. (January 1996). "Sequence of Echinochloa hoja blanca tenuivirus RNA-5". Virus Genes. 12 (2): 131–134. doi:10.1007/bf00572951. ISSN   0920-8569.