Richard B. Flavell

Last updated

Richard Flavell
RichardBFlavell.jpg
Born
Richard Bailey Flavell

(1943-10-11) 11 October 1943 (age 80)
Birmingham, England
CitizenshipUK
Alma mater University of Birmingham
University of East Anglia
Awards FRS (1998)
Scientific career
FieldsPlant molecular genetics, Plant breeding
Institutions John Innes Centre
Doctoral advisor John Fincham [ citation needed ]
Doctoral students Jonathan D. G. Jones [ citation needed ]

Richard Bailey Flavell CBE, FRS (born 11 October 1943) is a British molecular biologist, Chief Scientific Officer of Ceres, Inc., and was director of John Innes Centre from 1987 to 1998. [1]

Contents

Life

He was educated at the University of Birmingham (BSc, 1964 in Microbiology) and at the University of East Anglia (PhD, 1967 focused on the genetics of acetate utilization in Neurospora crassa ). Following that he held a Postdoctoral Fellowship at Stanford University, Stanford, California, 1967–69 where he studied mitochondrial structure and function in Neurospora crassa. He then took up an appointment at the Plant Breeding Institute, Cambridge, in the Department of Cytogenetics under the leadership of Ralph Riley. In the following years he built up a team of plant molecular geneticists that was one of the first to clone plant DNA, to produce transgenic plants and to determine the structure of a plant mitochondrial genome.[ citation needed ]

Works

Related Research Articles

<span class="mw-page-title-main">Barbara McClintock</span> American scientist and cytogeneticist (1902–1992)

Barbara McClintock was an American scientist and cytogeneticist who was awarded the 1983 Nobel Prize in Physiology or Medicine. McClintock received her PhD in botany from Cornell University in 1927. There she started her career as the leader of the development of maize cytogenetics, the focus of her research for the rest of her life. From the late 1920s, McClintock studied chromosomes and how they change during reproduction in maize. She developed the technique for visualizing maize chromosomes and used microscopic analysis to demonstrate many fundamental genetic ideas. One of those ideas was the notion of genetic recombination by crossing-over during meiosis—a mechanism by which chromosomes exchange information. She produced the first genetic map for maize, linking regions of the chromosome to physical traits. She demonstrated the role of the telomere and centromere, regions of the chromosome that are important in the conservation of genetic information. She was recognized as among the best in the field, awarded prestigious fellowships, and elected a member of the National Academy of Sciences in 1944.

<span class="mw-page-title-main">John Innes Centre</span> Independent centre for research in plant and microbial science

The John Innes Centre (JIC), located in Norwich, Norfolk, England, is an independent centre for research and training in plant and microbial science founded in 1910. It is a registered charity grant-aided by the Biotechnology and Biological Sciences Research Council (BBSRC), the European Research Council (ERC) and the Bill and Melinda Gates Foundation and is a member of the Norwich Research Park. In 2017, the John Innes Centre was awarded a gold Athena SWAN Charter award for equality in the workplace.

<i>Neurospora crassa</i> Species of ascomycete fungus in the family Sordariaceae

Neurospora crassa is a type of red bread mold of the phylum Ascomycota. The genus name, meaning 'nerve spore' in Greek, refers to the characteristic striations on the spores. The first published account of this fungus was from an infestation of French bakeries in 1843.

<span class="mw-page-title-main">Cycloheximide</span> Chemical compound

Cycloheximide is a naturally occurring fungicide produced by the bacterium Streptomyces griseus. Cycloheximide exerts its effects by interfering with the translocation step in protein synthesis, thus blocking eukaryotic translational elongation. Cycloheximide is widely used in biomedical research to inhibit protein synthesis in eukaryotic cells studied in vitro. It is inexpensive and works rapidly. Its effects are rapidly reversed by simply removing it from the culture medium.

<i>Neurospora</i> Genus of fungi

Neurospora is a genus of Ascomycete fungi. The genus name, meaning "nerve spore" refers to the characteristic striations on the spores that resemble axons.

HomoloGene, a tool of the United States National Center for Biotechnology Information (NCBI), is a system for automated detection of homologs among the annotated genes of several completely sequenced eukaryotic genomes.

<span class="mw-page-title-main">Mating in fungi</span> Combination of genetic material between compatible mating types

Fungi are a diverse group of organisms that employ a huge variety of reproductive strategies, ranging from fully asexual to almost exclusively sexual species. Most species can reproduce both sexually and asexually, alternating between haploid and diploid forms. This contrasts with many eukaryotes such as mammals, where the adults are always diploid and produce haploid gametes which combine to form the next generation. In fungi, both haploid and diploid forms can reproduce – haploid individuals can undergo asexual reproduction while diploid forms can produce gametes that combine to give rise to the next generation.

John Robert Stanley Fincham FRS FRSE was a noted British geneticist who made important contributions to biochemical genetics and microbial genetics.

Extranuclear inheritance or cytoplasmic inheritance is the transmission of genes that occur outside the nucleus. It is found in most eukaryotes and is commonly known to occur in cytoplasmic organelles such as mitochondria and chloroplasts or from cellular parasites like viruses or bacteria.

<span class="mw-page-title-main">Jozef Schell</span> Belgian molecular biologist

Jozef Stefaan "Jeff", Baron Schell was a Belgian molecular biologist.

<span class="mw-page-title-main">David Perkins (geneticist)</span> American geneticist

David Dexter Perkins was an American geneticist, a member of the faculty of the Department of Biology at Stanford University for more than 58 years, from 1948 until his death in 2007. He received his PhD in Zoology in 1949 from Columbia University. A member of the National Academy of Sciences, he served as president of the Genetics Society of America in 1977. In a scientific career that spanned more than six decades, Perkins collaborated on more than 300 papers. His associates included many graduate students and postdoctoral fellows who went on to scientific careers throughout the world.

<span class="mw-page-title-main">Fungal Genetics Stock Center</span>

Established in 1960, the Fungal Genetics Stock Center is the main open repository for genetically characterized fungi. The FGSC is a member of the World Federation for Culture Collections and is a leading collection in the US Culture Collection Network Research Coordination Network.

<span class="mw-page-title-main">Chorismate synthase</span>

The enzyme chorismate synthase catalyzes the chemical reaction

<span class="mw-page-title-main">Cystathionine gamma-synthase</span>

In enzymology, a cystathionine gamma-synthase is an enzyme that catalyzes the formation of cystathionine from cysteine and an activated derivative of homoserine, e.g.:

Bernard Ogilvie Dodge was an American botanist and pioneer researcher on heredity in fungi. Dodge was the author of over 150 papers dealing with the life histories, cytology, morphology, pathology and genetics of fungi, and with insects and other animal pests of plants. He made the first studies of sexual reproduction in the common bread mold, Neurospora.

Robert Lee Metzenberg was an American geneticist known for his work on genetic regulation and metabolism with Neurospora crassa.

The one gene–one enzyme hypothesis is the idea that genes act through the production of enzymes, with each gene responsible for producing a single enzyme that in turn affects a single step in a metabolic pathway. The concept was proposed by George Beadle and Edward Tatum in an influential 1941 paper on genetic mutations in the mold Neurospora crassa, and subsequently was dubbed the "one gene–one enzyme hypothesis" by their collaborator Norman Horowitz. In 2004, Horowitz reminisced that "these experiments founded the science of what Beadle and Tatum called 'biochemical genetics.' In actuality they proved to be the opening gun in what became molecular genetics and all the developments that have followed from that." The development of the one gene–one enzyme hypothesis is often considered the first significant result in what came to be called molecular biology. Although it has been extremely influential, the hypothesis was recognized soon after its proposal to be an oversimplification. Even the subsequent reformulation of the "one gene–one polypeptide" hypothesis is now considered too simple to describe the relationship between genes and proteins.

The frequency (frq) gene encodes the protein frequency (FRQ) that functions in the Neurospora crassa circadian clock. The FRQ protein plays a key role in circadian oscillator, serving to nucleate the negative element complex in the auto regulatory transcription-translation negative feedback-loop (TTFL) that is responsible for circadian rhythms in N. crassa. Similar rhythms are found in mammals, Drosophila and cyanobacteria. Recently, FRQ homologs have been identified in several other species of fungi. Expression of frq is controlled by the two transcription factors white collar-1 (WC-1) and white collar-2 (WC-2) that act together as the White Collar Complex (WCC) and serve as the positive element in the TTFL. Expression of frq can also be induced through light exposure in a WCC dependent manner. Forward genetics has generated many alleles of frq resulting in strains whose circadian clocks vary in period length.

White Collar-1 (wc-1) is a gene in Neurospora crassa encoding the protein WC-1. WC-1 has two separate roles in the cell. First, it is the primary photoreceptor for Neurospora and the founding member of the class of principle blue light photoreceptors in all of the fungi. Second, it is necessary for regulating circadian rhythms in FRQ. It is a key component of a circadian molecular pathway that regulates many behavioral activities, including conidiation. WC-1 and WC-2, an interacting partner of WC-1, comprise the White Collar Complex (WCC) that is involved in the Neurospora circadian clock. WCC is a complex of nuclear transcription factor proteins, and contains transcriptional activation domains, PAS domains, and zinc finger DNA-binding domains (GATA). WC-1 and WC-2 heterodimerize through their PAS domains to form the White Collar Complex (WCC).

<span class="mw-page-title-main">David J. L. Luck</span> American cell biologist

David J. L. Luck (1929–1998) was an American cell biologist known for his work on flagella and mitochondrial DNA. He was a longtime professor at Rockefeller University and a member of the U.S. National Academy of Sciences.

References

  1. 'FLAVELL, Dr Richard Bailey', Who's Who 2014, A & C Black, an imprint of Bloomsbury Publishing plc, 2014