Robert B. Mellor

Last updated
Robert B. Mellor
Born
Yorkshire, UK
NationalityBritish
CitizenshipGB
Alma mater Newcastle University
Known forContributions to biological, environmental and economic sciences
AwardsSeveral
Scientific career
FieldsNatural Sciences and Computing
Institutions Kingston University,
IT University of Copenhagen,
University of Göttingen ,
University of Basel
Marburg University
Thesis The nodulation of legumes (DSc)  (1997)
Website www.kingston.ac.uk/staff/profile/dr-robert-mellor-110/

Robert B. Mellor (born in Yorkshire, UK) is a British scientist probably best known for his 1989 "unified vacuole theory", although also made significant contributions to environmental technology and to our understanding of the workings of the tech entrepreneurship ecosystem.

Contents

Unified vacuole theory

The theory states that in plant endosymbioses, the micro-symbiont and the macro-symbiont generally share their lytic vacuolar compartments. This stems from Mellor's earlier 1988 symbiosome (or "symbiosome is a lysosome") theory, which states that the organelle that microsymbionts inhabit partially takes over the lysosomal functions in these plant cells. These plant cells are analogous to the role of protein bodies in seeds, [1] in particular that the rhizobial symbiosome is an organ-specific form of lysosome or vacuole in legume root nodules.

The Marburg and Basel Years (plant biology)

Mellor was interested in how plants distinguish between symbiotic and pathogenic infections. In 1984, he set about measuring defence responses including Phytoalexin and Chitinase in nodules infected with different rhizobial mutants. Gradually, he observed that in Rhizobia, the nod genes are responsible for producing different nod factors (lipo-chitin molecules). Among many other effects he also observed that they can provoke plant defence responses, so that it is essential that these genes be switched off after infection, or symbiosis could not take place. This model won general acclaim, and the paper with David Collinge [2] was later reprinted (Mellor and Collinge, 1995) as that year’s number one most important publication in the area of Plant Sciences. [3]

In other works, Mellor has claimed that in legumes the root nodule cytoplasm may be under water stress and the plant may combat this by using the bacterial/fungal (in the case of vesicular arbuscular mycorrhiza) disaccharide sugar trehalose. The concept has been repeatedly confirmed, [4] and this effect explains why nodulated plants have a higher drought tolerance than non-nodulated plants. [5]

The Göttingen Years (environmental nanotech)

Mellor was also interested in applied science, and after leaving the University of Basel he became director of research and development at a German chemical company. There he led the group that invented and patented a system to power immobilized oxido-reductase enzymes and artificial co-factors using electrical power from a domestic socket. [6] Twenty-five years later, the authors Eltarahony et al. [7] stated in their round-up review paper that "... Mellor et al. [1992] pioneered the concept of current promotion, electrode bioreactor and denitrification control, this concept, [is now] widely used to treat different types of wastewater, such as toxic and refractory organic wastewater as well as wastewater containing heavy metal ions" helping to provide clean water for millions of people globally.

The London Years (computing and maths)

In early 2000, Mellor joined and helped start-up IT the University of Copenhagen, alongside Mads Tofte and others. In 2005 he became Director of Enterprise at Kingston University, London, (and quadrupling enterprise income) in Computing, Information Systems and Mathematics while teaching the mathematical modelling of business processes and knowledge management at MSc level. Mellor, influenced by Stiglitz, realized that econometric methods can be used to quantify the value of knowledge management. His breakthrough computer modelling resulted in a complete explanation of the developmental lifecycle of SMEs (small and medium-sized enterprises), firstly in his 2011 book and then later expanded upon in his 2018 publication, "Big Data Modelling the Knowledge Economy". [8]

He runs a Masters programme around IT Consultancy, as well as a select "Big Data" research group engaged with modelling organizations, especially Science Parks, in the context of regional development.

Most recently, working together with Matthias Georg Will, an econometric computer model was developed which explains why, in modern business environments, flat organizations can only exist if employees are able to competently evaluate incoming innovations and their judgement is accepted by their managers, a situation typified by the successful tech firms. [9]

Personal life

Keen on outdoor activities, R. B. Mellor has cycled across most of Europe; in the 1970's with his friend John Jowett he traversed Scotland on foot and also in 1980 co-wrote "The Pennine Way Pub Guide" (with John Jowett and Paul Wilson). He has climbed most of the central Pyrenees and in the 80's and 90's was occasional guide ('bergführer') for the Alpine Association (Alpenverein) in the Dolomites and Austrian Eastern Alps. Always interested in music, he added support to the Danish Soca music band Tropicats on their 1995 CD "Lets go Bananas". He holds an enhanced certificate for working with children and the vulnerable, and can often be found holding careers talks etc. in local schools and colleges.

Works

R. B. Mellor PhD DSc, is the author of over 100 scientific publications in journals, as well as eleven books, several of which have been translated into other languages. His impact factor (h-Index) is 26, [10] putting him well into the top decile (10%) of all researchers worldwide and in the top 20 researchers in computer modelling. He is an active consultant with over twelve years of industrial experience, and he lectures at postgraduate level on subjects like ‘information systems and econometrics’, ‘mathematical knowledge management’, ‘strategic innovation’, and ‘tech entrepreneurship’. He has received many international prizes for his work and ideas, and in 2020, he became a member of the advisor pool to the UK Government Office for Science on post-COVID-19 needs. [11]

Articles

Books

Related Research Articles

<span class="mw-page-title-main">Mycorrhiza</span> Fungus-plant symbiotic association

A mycorrhiza is a symbiotic association between a fungus and a plant. The term mycorrhiza refers to the role of the fungus in the plant's rhizosphere, its root system. Mycorrhizae play important roles in plant nutrition, soil biology, and soil chemistry.

<span class="mw-page-title-main">Fabaceae</span> Family of legume flowering plants

The Fabaceae or Leguminosae, commonly known as the legume, pea, or bean family, are a large and agriculturally important family of flowering plants. It includes trees, shrubs, and perennial or annual herbaceous plants, which are easily recognized by their fruit (legume) and their compound, stipulate leaves. The family is widely distributed, and is the third-largest land plant family in number of species, behind only the Orchidaceae and Asteraceae, with about 765 genera and nearly 20,000 known species.

<span class="mw-page-title-main">Rhizobia</span> Nitrogen fixing soil bacteria

Rhizobia are diazotrophic bacteria that fix nitrogen after becoming established inside the root nodules of legumes (Fabaceae). To express genes for nitrogen fixation, rhizobia require a plant host; they cannot independently fix nitrogen. In general, they are gram negative, motile, non-sporulating rods.

<span class="mw-page-title-main">Trehalose</span> Chemical compound

Trehalose is a sugar consisting of two molecules of glucose. It is also known as mycose or tremalose. Some bacteria, fungi, plants and invertebrate animals synthesize it as a source of energy, and to survive freezing and lack of water.

<i>Ensifer meliloti</i> Species of bacterium

Ensifer meliloti are an aerobic, Gram-negative, and diazotrophic species of bacteria. S. meliloti are motile and possess a cluster of peritrichous flagella. S. meliloti fix atmospheric nitrogen into ammonia for their legume symbionts, such as alfalfa. S. meliloti forms a symbiotic relationship with legumes from the genera Medicago, Melilotus and Trigonella, including the model legume Medicago truncatula. This symbiosis promotes the development of a plant organ, termed a root nodule. Because soil often contains a limited amount of nitrogen for plant use, the symbiotic relationship between S. meliloti and their legume hosts has agricultural applications. These techniques reduce the need for inorganic nitrogenous fertilizers.

<span class="mw-page-title-main">Root nodule</span> Plant part

Root nodules are found on the roots of plants, primarily legumes, that form a symbiosis with nitrogen-fixing bacteria. Under nitrogen-limiting conditions, capable plants form a symbiotic relationship with a host-specific strain of bacteria known as rhizobia. This process has evolved multiple times within the legumes, as well as in other species found within the Rosid clade. Legume crops include beans, peas, and soybeans.

<span class="mw-page-title-main">Nod factor</span> Signaling molecule

Nod factors, are signaling molecules produced by soil bacteria known as rhizobia in response to flavonoid exudation from plants under nitrogen limited conditions. Nod factors initiate the establishment of a symbiotic relationship between legumes and rhizobia by inducing nodulation. Nod factors produce the differentiation of plant tissue in root hairs into nodules where the bacteria reside and are able to fix nitrogen from the atmosphere for the plant in exchange for photosynthates and the appropriate environment for nitrogen fixation. One of the most important features provided by the plant in this symbiosis is the production of leghemoglobin, which maintains the oxygen concentration low and prevents the inhibition of nitrogenase activity.

<i>Frankia</i> Genus of bacteria

Frankia is a genus of nitrogen-fixing bacteria that live in symbiosis with actinorhizal plants, similar to the Rhizobium bacteria found in the root nodules of legumes in the family Fabaceae. Frankia also initiate the forming of root nodules.

<span class="mw-page-title-main">Root hair</span> Part of plant root

Root hair, or absorbent hairs, are outgrowths of epidermal cells, specialized cells at the tip of a plant root. They are lateral extensions of a single cell and are only rarely branched. They are found in the region of maturation, of the root. Root hair cells improve plant water absorption by increasing root surface area to volume ratio which allows the root hair cell to take in more water. The large vacuole inside root hair cells makes this intake much more efficient. Root hairs are also important for nutrient uptake as they are main interface between plants and mycorrhizal fungi.

Sharon Rugel Long is an American plant biologist. She is the Steere-Pfizer Professor of Biological Science in the Department of Biology at Stanford University, and the Principal Investigator of the Long Laboratory at Stanford.

Symbiotic bacteria are bacteria living in symbiosis with another organism or each other. For example, rhizobia living in root nodules of legumes provide nitrogen fixing activity for these plants.

Horizontal transmission is the transmission of organisms between biotic and/or abiotic members of an ecosystem that are not in a parent-progeny relationship. This concept has been generalized to include transmissions of infectious agents, symbionts, and cultural traits between humans.

<i>Bradyrhizobium</i> Genus of bacteria

Bradyrhizobium is a genus of Gram-negative soil bacteria, many of which fix nitrogen. Nitrogen fixation is an important part of the nitrogen cycle. Plants cannot use atmospheric nitrogen (N2); they must use nitrogen compounds such as nitrates.

<i>Inga edulis</i> Species of tree

Inga edulis, known as ice-cream bean, ice-cream-bean, joaquiniquil, cuaniquil, guama or guaba, is a fruit native to South America. It is in the mimosoid tribe of the legume family Fabaceae. It is widely grown, especially by Indigenous Amazonians, for shade, food, timber, medicine, and production of the alcoholic beverage cachiri. It is popular in Peru, Ecuador, Pernambuco-Brazil, Venezuela and Colombia. The taxonomic name Inga is derived from its name with the Tupí people of South America, while the species name edulis is Latin for "edible". The common name "ice-cream bean" alludes to the sweet flavor and smooth texture of the pulp.

Actinorhizal plants are a group of angiosperms characterized by their ability to form a symbiosis with the nitrogen fixing actinomycetota Frankia. This association leads to the formation of nitrogen-fixing root nodules.

<i>Lotus japonicus</i> Species of legume

Lotus japonicus is a wild legume that belongs to family Fabaceae. Members of this family are very diverse, constituting about 20,000 species. They are of significant agricultural and biological importance as many of the legume species are rich sources of protein and oil and can also fix atmospheric nitrogen.

<i>Frankia alni</i> Species of bacterium

Frankia alni is a Gram-positive species of actinomycete filamentous bacterium that lives in symbiosis with actinorhizal plants in the genus Alnus. It is a nitrogen-fixing bacterium and forms nodules on the roots of alder trees.

Methylobacterium nodulans is an aerobic, facultatively methylotrophic, legume root nodule-forming and nitrogen-fixing bacteria.

<span class="mw-page-title-main">LysM domain</span>

In molecular biology the LysM domain is a protein domain found in a wide variety of extracellular proteins and receptors. The LysM domain is named after the Lysin Motif which was the original name given to the sequence motif identified in bacterial proteins. The region was originally identified as a C-terminal repeat found in the Enterococcus hirae muramidase. The LysM domain is found in a wide range of microbial extracellular proteins, where the LysM domain is thought to provide an anchoring to extracellular polysaccharides such as peptidoglycan and chitin. LysM domains are also found in plant receptors, including NFP, the receptor for Nod factor which is necessary for the root nodule symbiosis between legumes and symbiotic bacteria. The LysM domain is typically between 44 and 65 amino acid residues in length. The structure of the LysM domain showed that it is composed of a pair of antiparallel beta strands separated by a pair of short alpha helices.

<span class="mw-page-title-main">Symbiosome</span>

A symbiosome is a specialised compartment in a host cell that houses an endosymbiont in a symbiotic relationship.

References

  1. Mellor, Robert B. (1 August 1989). "Bacteroids in the Rhizobium-Legume Symbiosis Inhabit a Plant Internal Lytic Compartment: Implications for other Microbial Endosymbioses". Journal of Experimental Botany. 40 (8): 831–839. doi:10.1093/jxb/40.8.831.
  2. "Employees". 8 August 2007.
  3. Mellor, Robert B.; Collinge, David B. (1995). "A simple model based on known plant defense reactions is sufficient to explain most aspects of nodulation" (PDF). Journal of Experimental Botany. 46 (1): 1–18. doi:10.1093/jxb/46.1.1-a.
  4. Kosar, Firdos; Akram, Nudrat Aisha; Sadiq, Muhammad; Al-Qurainy, Fahad; Ashraf, Muhammad (30 October 2018). "Trehalose: A Key Organic Osmolyte Effectively Involved in Plant Abiotic Stress Tolerance". Journal of Plant Growth Regulation. 38 (2): 606–618. doi:10.1007/s00344-018-9876-x. S2CID   92258526.
  5. Farías-Rodríguez, Rodolfo; Mellor, Robert B.; Arias, Carlos; Peña-Cabriales, Juan José (March 1998). "The accumulation of trehalose in nodules of several cultivars of common bean (Phaseolus vulgaris) and its correlation with resistance to drought stress". Physiologia Plantarum. 102 (3): 353–359. doi:10.1034/j.1399-3054.1998.1020303.x.
  6. Mellor, Robert B.; Ronnenberg, Jörg; Campbell, Wilbur H.; Diekmann, Stephen (February 1992). "Reduction of nitrate and nitrite in water by immobilized enzymes". Nature. 355 (6362): 717–719. Bibcode:1992Natur.355..717M. doi:10.1038/355717a0. S2CID   4357605.
  7. Eltarahony, Marwa; Zaki, Sahar; Kheiralla, Zeinab; Abd-El-haleem, Desouky (1 June 2018). "NAP enzyme recruitment in simultaneous bioremediation and nanoparticles synthesis". Biotechnology Reports. 18: e00257. doi: 10.1016/j.btre.2018.e00257 . PMC   5989592 . PMID   29876306.
  8. Mellor, Robert B. (2018). "Big data modelling the knowledge economy" (PDF). International Journal of Knowledge-Based Development. 9 (3): 206. doi:10.1504/IJKBD.2018.094896.
  9. Will, Matthias G.; Al-Kfairy, Mousa; Mellor, Robert B. (July 2019). "How organizational structure transforms risky innovations into performance – A computer simulation" (PDF). Simulation Modelling Practice and Theory. 94: 264–285. doi:10.1016/j.simpat.2019.03.007. S2CID   108313964.
  10. "R B Mellor".
  11. "Dr Robert Mellor - Academic profiles - Kingston University London". www.kingston.ac.uk. Retrieved 2020-08-10.