Running injuries

Last updated

Running injuries
Other namesRunning-related injuries (RRI)
Specialty Sports medicine

Running injuries (or running-related injuries, RRI) affect about half of runners annually. The frequencies of various RRI depend on the type of running, such as speed and mileage. Some injuries are acute, caused by sudden overstress, such as side stitch, strains, and sprains. Many of the common injuries that affect runners are chronic, developing over longer periods as the result of overuse. Common overuse injuries include shin splints, stress fractures, Achilles tendinitis, Iliotibial band syndrome, Patellofemoral pain (runner's knee), and plantar fasciitis.

Contents

Proper running form is important in injury prevention. A major aspect of running form is foot strike pattern. The way in which the foot makes contact with the ground determines how the force of the impact is distributed throughout the body. Different types of modern running shoes are created to adjust the foot strike pattern in an effort to reduce the risk of injury. In recent years, barefoot running has increased in popularity in many Western countries, because of claims that it reduces the risk of injury. However, this has not been proven and is still debated.[ citation needed ]

Overview

"The causes of running injuries are so multifactorial and diverse, and apparently vary greatly from individual to individual, that any preventive measure proposed would probably be of help to only a small minority. The only obvious exception would be, of course, the reduction in jogging activity itself. A recent study came to the same unspectacular conclusion. … We suspect, however, that it would be as difficult to motivate determined joggers to decrease their injury risk by cutting down on mileage as it would be to motivate the sedentary population to decrease its cardiovascular risk by taking up activities such as jogging." [1]

"A prospective cohort study of 300 runners followed for two years showed that 73 percent of women and 62 percent of men sustained an injury, with 56 percent of the injured runners sustaining more than one injury during the study period." [2]

A prospective cohort study of 76 runners followed for one year showed that 51 percent reported an injury. Injured runners were heavier. "Over 60% of male injured runners and over 50% of female injured runners had increased their weekly running distance by >30% between consecutive weeks at least once in the 4 weeks prior to injury." [3]

"… an evolutionary perspective indicates that we did not evolve to run long distances at fast speeds on a regular basis. As a result, it is unlikely there was selection for the human body to cope with some of the extreme demands runners place on their bodies." [4]

Acute injuries

Side stitch

A side stitch is an intense stabbing abdominal pain under the lower edge of the ribcage that occurs during exercise. It is also called a side ache, side cramp, muscle stitch, or simply a stitch, and the medical term is Exercise-related Transient Abdominal Pain (ETAP). It sometimes extends to shoulder tip pain, and commonly occurs during running, swimming, and horseback riding. Approximately two-thirds of runners will experience at least one episode of a stitch each year. The precise cause is unclear, although it most likely involves irritation of the abdominal lining, and the condition is more likely after consuming a meal or a sugary beverage. If the pain is present only when exercising and is completely absent at rest, in an otherwise healthy person, it does not require investigation. Typical treatment strategies involve deep breathing and/or manual pressure on the affected area. [5] [6] [7]

Strains

A strain is an injury that occurs to a muscle, tendon, or both. Generally, the muscle or tendon overstretches and partially tears, under more physical stress than it can withstand, [8] often from a sudden increase in duration, intensity, or frequency of an activity. Strains most commonly occur in the foot, leg, or back. [9] Immediate treatment typically includes five steps abbreviated as PRICE: protection, rest, ice, compression, elevation. [10]

Sprains

A sprain, also known as a torn ligament, is the stretching or tearing of ligaments within a joint, often caused by an injury abruptly forcing the joint beyond its functional range of motion. Ligaments are tough, inelastic fibers made of collagen that connect two or more bones to form a joint. [11] Sprains can occur at any joint but most commonly occur in the ankle, knee, or wrist. [12] The majority of sprains are mild, causing minor swelling and bruising that can be resolved with conservative treatment, typically summarized as RICE: rest, ice, compression, elevation. However, severe sprains involve complete tears, ruptures, or fractures, often leading to joint instability, severe pain, and decreased functional ability. These sprains require surgical fixation, prolonged immobilization, and physical therapy. [13]

Morton's neuroma

Morton's neuroma is a tightening of the tissues surrounding the nerves leading into your toes. [14] This is caused by wearing shoes with a narrow toe bed, like high heels, or in high-impact activities like running or jogging. Treatments can include switching to a shoe with a wider toe bed, the use of inserts in your shoe, cortisol shots, or in extreme cases, surgery can be done to remove the affected nerve.

Overuse injuries

Causes and prevention

Pronation, neutral, and supination placements of the right ankle. The ankle and foot naturally pronate and supinate by about 5 degrees while walking or running. The red arrows indicate excessive pronation. Ankle Pronation Position.png
Pronation, neutral, and supination placements of the right ankle. The ankle and foot naturally pronate and supinate by about 5 degrees while walking or running. The red arrows indicate excessive pronation.

In general, overuse injuries are the result of repetitive impact between the foot and the ground. With improper running form, the force of the impact can be distributed abnormally throughout the feet and legs. Running form tends to worsen with fatigue. When moving at a constant pace along a straight path, a symmetrical gait is considered to be normal. Asymmetry is considered to be a risk factor for injury. One study attempted to quantify the change in running form between a rested and fatigued state by measuring asymmetrical running gait in the lower limbs. The results showed that "knee internal rotation and knee stiffness became more asymmetrical with fatigue, increasing by 14% and 5.3%, respectively." [15] These findings suggest that focusing on proper running form, particularly when fatigued, could reduce the risk of running-related injuries. Running in worn-out shoes may also increase the risk of injury, and altering the footwear might be helpful. These injuries can also arise due to a sudden increase in the intensity or amount of exercise.

Shin splints

A shin splint, also known as Medial Tibial Stress Syndrome (MTSS), is pain along the inside edge of the shinbone (tibia) due to inflammation of tissue in the area. Generally this is between the middle of the lower leg to the ankle. The pain may be dull or sharp, and is generally brought on by high-impact exercise that overloads the tibia. Groups that are commonly affected include runners (especially on concrete or asphalt), dancers, gymnasts, and military personnel. Rates of shin splints in at-risk groups range from 4% to 35%. The condition occurs more often in women. Shin splints are generally treated by rest followed by a gradual return to exercise over a period of weeks. [16] [17]

Stress fractures

A stress fracture is a fatigue-induced bone fracture caused by repeated stress over time. Instead of resulting from a single severe impact, stress fractures are the result of accumulated injury from repeated submaximal loading, such as running or jumping. Because of this mechanism, stress fractures are common overuse injuries in athletes. [18]

Stress fractures can be described as small cracks in the bone, or "hairline fractures". Stress fractures of the foot are sometimes called "march fractures" because of the injury's prevalence among heavily marching soldiers. [19] Stress fractures most frequently occur in weight-bearing bones of the lower extremities, such as the tibia and fibula (bones of the lower leg), metatarsal and navicular bones (bones of the foot). Less common are stress fractures to the femur, pelvis, and sacrum. Treatment usually consists of rest followed by a gradual return to exercise over a period of months. [18]

Achilles tendinitis

Achilles tendinitis is inflammation of the Achilles tendon, resulting in pain along the back of the leg near the heel. There are two types of Achilles tendinitis, insertional and noninsertional. Noninsertional Achilles tendinitis is the type that more commonly affects runners. In this case, inflammation is occurring in the middle portion of the tendon, whereas insertional Achilles tendinitis is inflammation located where the tendon connects (inserts) to the heel bone. Having tight calf muscles may also increase the risk of Achilles tendinitis. Stretching the calves before starting heavy exercise may help relieve tightness in the muscles. [20]

Patellofemoral pain syndrome

Patellofemoral pain syndrome is associated with pain in the knee and around the patella (kneecap). It is sometimes referred to as runner's knee, but this term is also used for other overuse injuries that involve knee pain. It can be caused by a single incident but is often the result of overuse or a sudden increase in physical activity. Patellofemoral pain syndrome is often mistaken for Chondromalacia patellae which is another condition commonly referred to as 'Runner's Knee'. This is because both of them involve pain in or around the patella (knee cap) and this is how they are distinguished from other running injuries like Patellar Tendonitis (Jumper's Knee). [21]

Iliotibial band syndrome

Iliotibial band syndrome (ITBS) is defined as inflammation of the iliotibial band on the outside of the knee. This inflammation occurs a result of the iliotibial band and the outside of the knee joint rubbing together. The resulting pain typically is initially mild and worsens if running continues. Recurrence is a common issue with iliotibial band syndrome, as pain goes away with a period of rest, but symptoms can easily come back as the runner returns to training. During recovery, the muscles on the outside of the hip can be stretched to reduce tightness in the band.

Plantar fasciitis

The plantar fascia extends from the heel bone to the toes, and helps support the arch of the foot. [22] Plantar fasciitis is a common cause of heel pain and affects about two million people in the United States. Though once considered an inflammatory condition, plantar fasciitis is now characterized as a degenerative pathology. Intrinsic risk factors include obesity and limited ankle flexibility. Extrinsic risk factors include deconditioning, hard surfaces, inadequate stretching and poor footwear. [23]

Footwear

Traditional running shoes

Study participants wearing running shoes with moderate lateral torsional stiffness "were 49% less likely to incur any type of lower extremity injury and 52% less likely to incur an overuse lower extremity injury than" participants wearing running shoes with minimal lateral torsional stiffness, both of which were statistically significant observations." [24] Lateral torsional stiffness can be assessed simply by twisting the heel and toe in opposite directions. [25]

In the 1984 Bern 16 km race questionnaire, runners who had no shoe brand preference and presumably changed brands frequently had significantly fewer running injuries. There was also some correlation between higher shoe price and increased injury but — "It is probably incorrect, however, to interpret this surprising finding to mean that more expensive shoes cause more running injuries…". That group was 1 1⁄2 minutes slower than expected from their training and had a higher proportion of orthotics use. It may well be that runners with existing injuries hope that expensive shoes will fix their body. [26]

So-called "traditional" running shoes are designed to give more support and cushion the landing to reduce the effects of impact. They allow for more-comfortable running on hard surfaces such as asphalt and also protect the foot when stepping on rocks or other potentially sharp objects. However, "perceived impact is lower than actual impact, which results in inadequate impact-moderating behavior and consequent injury" — too much running. [27]

Barefoot running

Barefoot running has been promoted as one method of reducing the risk of running-related injuries. Barefoot running is thought to improve running form by encouraging forefoot striking. The collision of the forefoot with the ground generates a significantly smaller impact force in comparison to striking heel first. [28] However, barefoot running leaves the foot unprotected from stepping on sharp objects. Although running barefoot may reduce the risk of running-related injuries, it is important to take time while switching from running with shoes.

Beginning to run barefoot without reducing intensity or mileage of training can actually cause muscle or tendon injury. Changing one's style of running shoe or switching to barefoot running will most likely alter the foot strike pattern, meaning that the force of impact will be absorbed differently. Injuries are more likely to occur in novice barefoot runners. This may be a result of not yet having fully adapted to a new style of running, and therefore running with inconsistent technique. To measure this, a study was conducted involving runners who habitually run with a rearfoot strike while wearing shoes. Of the runners involved in the study, 32% used a heel strike pattern in initial attempts at running barefoot. Running barefoot while heel striking leads to increased muscle activation and impact accelerations. [29] The findings suggest that an inconsistency in running technique among novice barefoot runners may put them at a higher risk of injury in comparison to running with shoes.

Minimalist footwear

As an intermediate option between traditional running shoes and running barefoot, "minimalist" shoes lack thickly cushioned heels and are designed to encourage forefoot striking. [30] Compared to traditional running shoes, one study observed that high-speed runners in minimalist shoes experienced a significant redistribution of mechanical work from the knee to the ankle. [31] Therefore, minimalist shoes may be beneficial for runners who have experienced a knee injury in the past, although the shoes might increase the risk of ankle and calf injuries. As with barefoot running, runners who switch to minimalist shoes should not start out at full training intensity.

Related Research Articles

<span class="mw-page-title-main">Foot</span> Anatomical structure found in vertebrates

The foot is an anatomical structure found in many vertebrates. It is the terminal portion of a limb which bears weight and allows locomotion. In many animals with feet, the foot is a separate organ at the terminal part of the leg made up of one or more segments or bones, generally including claws and/or nails.

<span class="mw-page-title-main">Running</span> Method of terrestrial locomotion allowing rapid movement on foot

Running is a method of terrestrial locomotion by which humans and other animals move rapidly on foot. Running is a gait with an aerial phase in which all feet are above the ground. This is in contrast to walking, where one foot is always in contact with the ground, the legs are kept mostly straight, and the center of gravity vaults over the stance leg or legs in an inverted pendulum fashion. A feature of a running body from the viewpoint of spring-mass mechanics is that changes in kinetic and potential energy within a stride co-occur, with energy storage accomplished by springy tendons and passive muscle elasticity. The term "running" can refer to a variety of speeds ranging from jogging to sprinting.

<span class="mw-page-title-main">Human leg</span> Lower extremity or limb of the human body (foot, lower leg, thigh and hip)

The leg is the entire lower limb of the human body, including the foot, thigh or sometimes even the hip or buttock region. The major bones of the leg are the femur, tibia, and adjacent fibula. The thigh is between the hip and knee, while the calf (rear) and shin (front) are between the knee and foot.

Iliotibial band syndrome (ITBS) is the second most common knee injury, and is caused by inflammation located on the lateral aspect of the knee due to friction between the iliotibial band and the lateral epicondyle of the femur. Pain is felt most commonly on the lateral aspect of the knee and is most intensive at 30 degrees of knee flexion. Risk factors in women include increased hip adduction and knee internal rotation. Risk factors seen in men are increased hip internal rotation and knee adduction. ITB syndrome is most associated with long-distance running, cycling, weight-lifting, and with military training.

<span class="mw-page-title-main">Achilles tendon</span> Tendon at the back of the lower leg

The Achilles tendon or heel cord, also known as the calcaneal tendon, is a tendon at the back of the lower leg, and is the thickest in the human body. It serves to attach the plantaris, gastrocnemius (calf) and soleus muscles to the calcaneus (heel) bone. These muscles, acting via the tendon, cause plantar flexion of the foot at the ankle joint, and flexion at the knee.

<span class="mw-page-title-main">Plantar fasciitis</span> Connective tissue disorder of the heel

Plantar fasciitis or plantar heel pain is a disorder of the plantar fascia, which is the connective tissue which supports the arch of the foot. It results in pain in the heel and bottom of the foot that is usually most severe with the first steps of the day or following a period of rest. Pain is also frequently brought on by bending the foot and toes up towards the shin. The pain typically comes on gradually, and it affects both feet in about one-third of cases.

<span class="mw-page-title-main">Diseases of the foot</span>

Diseases of the foot generally are not limited, that is they are related to or manifest elsewhere in the body. However, the foot is often the first place some of these diseases or a sign or symptom of others appear. This is because of the foot's distance from the central circulation, the heart and its constant exposure to pressures from the ground and the weight of the body.

<span class="mw-page-title-main">Achilles tendinitis</span> Medical condition of the ankle and heel

Achilles tendinitis, also known as achilles tendinopathy, occurs when the Achilles tendon, found at the back of the ankle, becomes sore. Achilles tendinopathy is accompanied by alterations in the tendon's structure and mechanical properties. The most common symptoms are pain and swelling around the affected tendon. The pain is typically worse at the start of exercise and decreases thereafter. Stiffness of the ankle may also be present. Onset is generally gradual.

<span class="mw-page-title-main">Flat feet</span> Deformity in which the foot arches contact the ground

Flat feet, also called pes planus or fallen arches, is a postural deformity in which the arches of the foot collapse, with the entire sole of the foot coming into complete or near-complete contact with the ground. Sometimes children are born with flat feet (congenital). There is a functional relationship between the structure of the arch of the foot and the biomechanics of the lower leg. The arch provides an elastic, springy connection between the forefoot and the hind foot so that a majority of the forces incurred during weight bearing on the foot can be dissipated before the force reaches the long bones of the leg and thigh.

A soft tissue injury is the damage of muscles, ligaments and tendons throughout the body. Common soft tissue injuries usually occur from a sprain, strain, a one-off blow resulting in a contusion or overuse of a particular part of the body. Soft tissue injuries can result in pain, swelling, bruising and loss of function.

<span class="mw-page-title-main">Achilles tendon rupture</span> Medical condition where the tendon at the back of the ankle breaks

Achilles tendon rupture is when the Achilles tendon, at the back of the ankle, breaks. Symptoms include the sudden onset of sharp pain in the heel. A snapping sound may be heard as the tendon breaks and walking becomes difficult.

The knee examination, in medicine and physiotherapy, is performed as part of a physical examination, or when a patient presents with knee pain or a history that suggests a pathology of the knee joint.

<span class="mw-page-title-main">Calcaneal spur</span> Medical condition of the heel

A calcaneal spur is a bony outgrowth from the calcaneal tuberosity. Calcaneal spurs are typically detected by x-ray examination. It is a form of exostosis.

<span class="mw-page-title-main">Barefoot running</span> Running without shoes

Barefoot running, also called "natural running", is the act of running without footwear. With the advent of modern footwear, running barefoot has become less common in most parts of the world but is still practiced in parts of Africa and Latin America. In some Western countries, barefoot running has grown in popularity due to perceived health benefits.

<span class="mw-page-title-main">Pronation of the foot</span> Type of foot movement

Pronation is a natural movement of the foot that occurs during foot landing while running or walking. Composed of three cardinal plane components: subtalar eversion, ankle dorsiflexion, and forefoot abduction, these three distinct motions of the foot occur simultaneously during the pronation phase. Pronation is a normal, desirable, and necessary component of the gait cycle. Pronation is the first half of the stance phase, whereas supination starts the propulsive phase as the heel begins to lift off the ground.

<span class="mw-page-title-main">Vibram FiveFingers</span> Brand of minimalist shoes

The Vibram FiveFingers are a type of minimalist shoe manufactured by Vibram, originally marketed as a more natural alternative for outdoor activities. The footwear is meant to replicate being barefoot and has thin, flexible soles that are contoured to the shape of the human foot, including visible individual sections for the toes. The company settled a lawsuit in 2014 alleging false health claims and set aside $3.75 million to pay refunds of up to $94 to anyone who had purchased the product since March 21, 2009.

<span class="mw-page-title-main">Locomotor effects of shoes</span>

Locomotor effects of shoes are the way in which the physical characteristics or components of shoes influence the locomotion neuromechanics of a person. Depending on the characteristics of the shoes, the effects are various, ranging from alteration in balance and posture, muscle activity of different muscles as measured by electromyography (EMG), and the impact force. There are many different types of shoes that exist, such as running, walking, loafers, high heels, sandals, slippers, work boots, dress shoes, and many more. However, a typical shoe will be composed of an insole, midsole, outsole, and heels, if any. In an unshod condition, where one is without any shoes, the locomotor effects are primarily observed in the heel strike patterns and resulting impact forces generated on the ground.

The most common injuries in the sport of cricket occur in the lower back, thighs, shoulders, and hands. They can be classified as direct injuries or indirect injuries. Direct injuries are due to impact with the cricket ball, bat, or ground. Indirect injuries occur mostly due to repetitive movement causing overuse of muscles. Fast bowlers have the highest injury prevalence rate followed by batsmen.

<span class="mw-page-title-main">Plantar fascial rupture</span> Medical condition

A plantar fascial rupture, is a painful tear in the plantar fascia. The plantar fascia is a connective tissue that spans across the bottom of the foot. The condition plantar fasciitis may increase the likelihood of rupture. A plantar fascial rupture may be mistaken for plantar fasciitis or even a calcaneal fracture. To allow for proper diagnosis, an MRI is often needed.

<span class="mw-page-title-main">Ankle problems</span> Medical condition

Ankle problems occur frequently, having symptoms of pain or discomfort in the ankles.

References

  1. Marti, Bernard; Vader, John Paul; Minder, Christoph E.; Abelin, Theodor (May–Jun 1988). "On the epidemiology of running injuries: The 1984 Bern Grand-Prix study". American Journal of Sports Medicine . 16 (3): 285–294. doi:10.1177/036354658801600316. PMID   3381988. S2CID   41199266.
  2. Callahan, Lisa R. (4 October 2022). "Overview of running injuries of the lower extremity". Wolters Kluwer.
  3. Winter, Sara C.; Gordon, Susan; Brice, Sara M.; Lindsay, Daniel; Barrs, Sue (May 2020). "A Multifactorial Approach to Overuse Running Injuries: A 1-Year Prospective Study". Sports Health . 12 (3): 296–303. doi:10.1177/1941738119888504. PMC   7222667 . PMID   31994970.
  4. Lieberman, Daniel E. (2017). "History of Distance Running". In Waite, Brandee L.; Krabak, Brian J.; Lipman, Grant S. (eds.). The Long Distance Runner's Guide to Injury Prevention and Treatment. Skyhorse Publishing. pp. 2–17.
  5. Morton, Darren P.; Callister, Robin (February 2000). "Characteristics and etiology of exercise-related transient abdominal pain". Medicine & Science in Sports & Exercise. 32 (2): 432–438. doi: 10.1097/00005768-200002000-00026 . PMID   10694128.
  6. Morton, Darren P.; Callister, Robin (January 2015). "Exercise-Related Transient Abdominal Pain (ETAP)". Sports Medicine. 45 (1): 23–35. doi: 10.1007/s40279-014-0245-z . PMC   4281377 . PMID   25178498. S2CID   18088581.
  7. Wetsman, Nicole (20 October 2017). "When you get a stitch in your side, what's really going on?". Popular Science. Retrieved 30 November 2020.
  8. "Sprains and Strains: In-Depth". National Institutes of Health. January 2015. Retrieved 1 December 2020.
  9. Mulcahey, Mary K. (June 2020). "Sprains, Strains and Other Soft-Tissue Injuries". OrthoInfo. American Academy of Orthopaedic Surgeons. Retrieved 1 December 2020.
  10. Järvinen, T.A.H.; et al. (April 2007). "Muscle injuries: optimising recovery". Best Practice & Research: Clinical Rheumatology. 21 (2): 317–331. doi:10.1016/j.berh.2006.12.004. PMID   17512485.
  11. Bahr, Roald; Alfredson, Håkan; Järvinen, Markku; Järvinen, Tero; Khan, Karim; Kjaer, Michael; Matheson, Gordon; Maehlum, Sverre (2012-06-22), Bahr, Roald (ed.), "Types and Causes of Injuries", The IOC Manual of Sports Injuries, Wiley-Blackwell, pp. 1–24, doi:10.1002/9781118467947.ch1, ISBN   978-1-118-46794-7
  12. Hartshorne, Henry. "Sprained Joints". The Home Cyclopedia Of Health And Medicine. Retrieved 1 December 2020.
  13. "Ligament Sprain". Physiopedia. Retrieved 1 December 2020.
  14. "Morton's neuroma - Symptoms and causes". Mayo Clinic .
  15. Radzak, Kara N.; Putnam, Ashley M.; Tamura, Kaori; Hetzler, Ronald K.; Stickley, Christopher D. (January 2017). "Asymmetry between lower limbs during rested and fatigued state running gait in healthy individuals". Gait & Posture. 51: 268–274. doi:10.1016/j.gaitpost.2016.11.005. ISSN   1879-2219. PMID   27842295.
  16. Alaia, Michael J. (August 2019). "Shin Splints". OrthoInfo. American Academy of Orthopaedic Surgeons. Retrieved 30 November 2020.
  17. Reshef, N; Guelich, DR (April 2012). "Medial tibial stress syndrome". Clinics in Sports Medicine. 31 (2): 273–290. doi:10.1016/j.csm.2011.09.008. PMID   22341017.
  18. 1 2 Behrens, Steve; Deren, Matson; Fadale, Monchik (March–April 2013). "Stress Fractures of the Pelvis and Legs in Athletes: A Review". Sports Health: A Multidisciplinary Approach. 5 (2): 165–174. doi:10.1177/1941738112467423. PMC   3658382 . PMID   24427386.
  19. Payne, Jacqueline (26 March 2018). "Metatarsal Fractures". Patient.info. Retrieved 30 November 2020.
  20. Kadakia, Anish R. (June 2010). "Achilles Tendinitis". OrthoInfo. American Academy of Orthopaedic Surgeons. Retrieved 30 November 2020.
  21. "Runner's Knee & Jumper's Knee pain relief and treatment". www.physique.co.uk. Retrieved 2022-08-10.
  22. Petraglia, Federica; Ramazzina, Ileana; Costantino, Cosimo (10 May 2017). "Plantar fasciitis in athletes: diagnostic and treatment strategies. A systematic review". Muscles, Ligaments and Tendons Journal. 7 (1): 107–118. doi:10.11138/mltj/2017.7.1.107. PMC   5505577 . PMID   28717618.
  23. Schwartz, Emily N.; Su, John (Winter 2014). "Plantar fasciitis: a concise review". The Permanente Journal. 18 (1): 105–117. doi:10.7812/TPP/13-113. PMC   3951039 . PMID   24626080.
  24. Helton, Gary L.; et al. (October 2019). "Association Between Running Shoe Characteristics and Lower Extremity Injuries in United States Military Academy Cadets". The American Journal of Sports Medicine . 47 (12): 2853–2862. doi:10.1177/0363546519870534. PMID   31498686. S2CID   198305119.
  25. Williams, Bruce E. (March 2010). "A three-point approach to testing running shoes". Lower Extremity Review.
  26. Marti, B. (1989). "Relationships between Running Injuries and Running Shoes — Results of a Study of 5,000 Participants of a 16-km Run — The May 1984 Berne Grand Prix". In Segesser, B.; Pförringer, W. (eds.). The Shoe in Sport. Year Book Medical Publishers. pp. 256–265. ISBN   9780815178149.
  27. Robbins, Steven E.; Gouw, Gerard J. (1991). "Athletic footwear: unsafe due to perceptual illusions" (PDF). Medicine & Science in Sports & Exercise . 23 (2): 217–224. doi:10.1249/00005768-199102000-00012. PMID   2017018.
  28. Lieberman, Daniel. "Running Barefoot: Biomechanics of Foot Strike". Harvard University. Retrieved 9 February 2017.
  29. Lucas-Cuevas, Angel Gabriel; Priego Quesada, José Ignacio; Giménez, José Vicente; Aparicio, Inma; Jimenez-Perez, Irene; Pérez-Soriano, Pedro (November 2016). "Initiating running barefoot: Effects on muscle activation and impact accelerations in habitually rearfoot shod runners". European Journal of Sport Science. 16 (8): 1145–1152. doi:10.1080/17461391.2016.1197317. ISSN   1536-7290. PMID   27346636. S2CID   23392717.
  30. Lieberman, Daniel. "Running Barefoot: Heel Striking & Running Shoes". Harvard University. Retrieved 30 November 2020.[ dead link ]
  31. Fuller, Joel T.; Buckley, Jonathan D.; Tsiros, Margarita D.; Brown, Nicholas A. T.; Thewlis, Dominic (1 October 2016). "Redistribution of Mechanical Work at the Knee and Ankle Joints During Fast Running in Minimalist Shoes". Journal of Athletic Training. 51 (10): 806–812. doi:10.4085/1062-6050-51.12.05. ISSN   1938-162X. PMC   5189234 . PMID   27834504.