Sagittarius Stream

Last updated

In astronomy, the Sagittarius Stream is a long, complex structure made of stars that wrap around the Milky Way galaxy in an orbit that nearly crosses the galactic poles. It consists of tidally stripped stars from the Sagittarius Dwarf Elliptical Galaxy, resulting from the process of merging with the Milky Way over a period of billions of years.

Contents

This stellar stream was originally proposed in 1995 by Donald Lynden-Bell after analyzing the distribution of globular clusters in the Milky Way. [1] The actual structure was identified by Newberg and associates (2002) [2] plus Majewski and associates (2003) [3] using data from the 2MASS and SDSS surveys. In 2006, Belokurov and his collaborators [4] found that the Sagittarius Stream has two branches.

When the progenitor object was shredded apart during the interaction, it sent oscillations (analogous to sound waves) through the Milky Way spiral arm structure. The effects of the oscillations are observed today as layers of alternately denser and sparser star distributions, above and below the Solar System. Presently, the position of the Sagittarius Stream relative to the observed layers [5] make the Sagittarius Dwarf Elliptical Galaxy the strongest candidate for this intruding object.

See also

Related Research Articles

<span class="mw-page-title-main">Local Group</span> Group of galaxies that includes the Milky Way

The Local Group is the galaxy group that includes the Milky Way, where Earth is located. It has a total diameter of roughly 3 megaparsecs (10 million light-years; 9×1019 kilometres), and a total mass of the order of 2×1012 solar masses (4×1042 kg). It consists of two collections of galaxies in a "dumbbell" shape; the Milky Way and its satellites form one lobe, and the Andromeda Galaxy and its satellites constitute the other. The two collections are separated by about 800 kiloparsecs (3×10^6 ly; 2×1019 km) and are moving toward one another with a velocity of 123 km/s. The group itself is a part of the larger Virgo Supercluster, which may be a part of the Laniakea Supercluster. The exact number of galaxies in the Local Group is unknown as some are occluded by the Milky Way; however, at least 80 members are known, most of which are dwarf galaxies.

<span class="mw-page-title-main">Sagittarius Dwarf Spheroidal Galaxy</span> Satellite galaxy of the Milky Way

The Sagittarius Dwarf Spheroidal Galaxy (Sgr dSph), also known as the Sagittarius Dwarf Elliptical Galaxy, is an elliptical loop-shaped satellite galaxy of the Milky Way. It contains four globular clusters in its main body, with the brightest of them—NGC 6715 (M54)—being known well before the discovery of the galaxy itself in 1994. Sgr dSph is roughly 10,000 light-years in diameter, and is currently about 70,000 light-years from Earth, travelling in a polar orbit at a distance of about 50,000 light-years from the core of the Milky Way. In its looping, spiraling path, it has passed through the plane of the Milky Way several times in the past. In 2018 the Gaia project of the European Space Agency showed that Sgr dSph had caused perturbations in a set of stars near the Milky Way's core, causing unexpected rippling movements of the stars triggered when it moved past the Milky Way between 300 and 900 million years ago.

<span class="mw-page-title-main">Monoceros Ring</span> Complex, ringlike filament of stars that wraps around the Milky Way three times

The Monoceros Ring(monoceros: Greek for 'unicorn') is a long, complex, ring of stars that wraps around the Milky Way three times. This is proposed to consist of a stellar stream torn from the Canis Major Dwarf Galaxy by tidal forces as part of the process of merging with the Milky Way over a period of billions of years, although this view has long been disputed. The ring contains 100 million solar masses and is 200,000 light years long.

<span class="mw-page-title-main">Milky Way</span> Galaxy containing the Solar System

The Milky Way is the galaxy that includes the Solar System, with the name describing the galaxy's appearance from Earth: a hazy band of light seen in the night sky formed from stars that cannot be individually distinguished by the naked eye.

The Milky Way has several smaller galaxies gravitationally bound to it, as part of the Milky Way subgroup, which is part of the local galaxy cluster, the Local Group.

<span class="mw-page-title-main">Virgo Stellar Stream</span> Stellar stream in the constellatiion Virgo discovered in 2005

The Virgo Stellar Stream, also known as Virgo Overdensity, is the proposed name for a stellar stream in the constellation of Virgo which was discovered in 2005. The stream is thought to be the remains of a dwarf spheroidal galaxy that is in the process of merging with the Milky Way. It is the largest galaxy visible from the Earth, in terms of the area of the night sky covered.

Canes Venatici I or CVn I is a dwarf spheroidal galaxy situated in the Canes Venatici constellation and discovered in 2006 in the data obtained by Sloan Digital Sky Survey. It is one of the most distant known satellites of the Milky Way as of 2011 together with Leo I and Leo II. The galaxy is located at a distance of about 220 kpc from the Sun and is moving away from the Sun at a velocity of about 31 km/s. It is classified as a dwarf spheroidal galaxy (dSph) meaning that it has an elliptical shape with the half-light radius of about 550 pc.

<span class="mw-page-title-main">Palomar 12</span> Globular cluster in the constellation Capricornus

Palomar 12 is a globular cluster in the constellation Capricornus, and is a member of the Palomar Globular Clusters group.

Ursa Major II Dwarf is a dwarf spheroidal galaxy situated in the Ursa Major constellation and discovered in 2006 in the data obtained by the Sloan Digital Sky Survey. The galaxy is located approximately 30 kpc from the Sun and moves towards the Sun with the velocity of about 116 km/s. It has an elliptical shape with the half-light radius of about 140 pc.

Segue 1 is a dwarf spheroidal galaxy or globular cluster situated in the Leo constellation and discovered in 2006 by Sloan Digital Sky Survey. It is located at a distance of about 23 kpc from the Sun and moves away from the Sun with the velocity of about 206 km/s. Segue 1 has a noticeably elongated shape with the half-light radius of about 30 pc. This elongation may be caused by the tidal forces acting from the Milky Way galaxy if Segue 1 is being tidally disrupted now.

<span class="mw-page-title-main">Stellar kinematics</span> Study of the movement of stars

In astronomy, stellar kinematics is the observational study or measurement of the kinematics or motions of stars through space.

<span class="mw-page-title-main">MilkyWay@home</span> BOINC based volunteer computing project researching astronomy

MilkyWay@home is a volunteer computing project in the astrophysics category, running on the Berkeley Open Infrastructure for Network Computing (BOINC) platform. Using spare computing power from over 38,000 computers run by over 27,000 active volunteers as of November 2011, the MilkyWay@home project aims to generate accurate three-dimensional dynamic models of stellar streams in the immediate vicinity of the Milky Way. With SETI@home and Einstein@home, it is the third computing project of this type that has the investigation of phenomena in interstellar space as its primary purpose. Its secondary objective is to develop and optimize algorithms for volunteer computing.

<span class="mw-page-title-main">Leo IV (dwarf galaxy)</span> Galaxy in the constellation Leo

Leo IV is a dwarf spheroidal galaxy situated in the Leo constellation, discovered in 2006 in the data obtained by the Sloan Digital Sky Survey. The galaxy is located at the distance of about 160 kpc from the Sun and moves away from the Sun with the velocity of about 130 km/s. It is classified as a dwarf spheroidal galaxy (dSph) meaning that it has an approximately round shape with the half-light radius of about 130 pc.

Canes Venatici II or CVn II is a dwarf spheroidal galaxy situated in the Canes Venatici constellation and discovered in 2006 in data obtained by the Sloan Digital Sky Survey. The galaxy is located at a distance of about 150 kpc from the Sun and moves towards the Sun with the velocity of about 130 km/s. It is classified as a dwarf spheroidal galaxy (dSph) meaning that it has an elliptical shape with a half-light radius of about 74+14
−10
 pc
.

Coma Berenices or Com is a dwarf spheroidal galaxy situated in the Coma Berenices constellation and discovered in 2006 in data obtained by the Sloan Digital Sky Survey. The galaxy is located at the distance of about 44 kpc from the Sun and moves away from the Sun with the velocity of about 98 km/s. It is classified as a dwarf spheroidal galaxy (dSph) meaning that it has an elliptical shape with the half-light radius of about 70 pc.

<span class="mw-page-title-main">Hercules (dwarf galaxy)</span> Dwarf spheroidal galaxy in the constellation Hercules

Hercules, or Her, is a dwarf spheroidal galaxy situated in the Hercules constellation and discovered in 2006 in data obtained by the Sloan Digital Sky Survey. The galaxy is located at a distance of about 140 kpc from the Sun and moves away from the Sun with a velocity of about 45 km/s. It is classified as a dwarf spheroidal galaxy (dSph). It has a noticeably elongated shape with a half-light radius of about 350 pc. This elongation may be caused by tidal forces acting from the Milky Way galaxy, meaning that Her is being tidally disrupted now. Her also shows some gradient of velocities across the galaxy's body and is embedded into a faint stellar stream, which also points towards its ongoing tidal disruption.

A stellar halo is the component of a galaxy's galactic halo that contains stars. The stellar halo extends far outside a galaxy's brightest regions and typically contains its oldest and most metal poor stars.

<span class="mw-page-title-main">Gaia Sausage</span> Remains galaxy merger in the Milky Way

The Gaia Sausage or Gaia Enceladus is the remains of a dwarf galaxy that merged with the Milky Way about 8–11 billion years ago. At least eight globular clusters were added to the Milky Way along with 50 billion solar masses of stars, gas and dark matter. It represents the last major merger of the Milky Way.

References

  1. Lynden-Bell, R. M.; Lynden-Bell, D. (July 1995). "Ghostly streams from the formation of the Galaxy's halo". Monthly Notices of the Royal Astronomical Society . 275 (2): 429–442. Bibcode:1995MNRAS.275..429L. doi: 10.1093/mnras/275.2.429 .
  2. Newberg, Heidi Jo; et al. (April 2002). "The Ghost of Sagittarius and Lumps in the Halo of the Milky Way". The Astrophysical Journal. 569 (1): 245–274. arXiv: astro-ph/0111095 . Bibcode:2002ApJ...569..245N. doi:10.1086/338983. S2CID   16909562.
  3. Majewski, Steven R.; et al. (December 2003). "A Two Micron All Sky Survey View of the Sagittarius Dwarf Galaxy. I. Morphology of the Sagittarius Core and Tidal Arms". The Astrophysical Journal. 599 (2): 1082–1115. arXiv: astro-ph/0304198 . Bibcode:2003ApJ...599.1082M. doi:10.1086/379504. S2CID   2387702.
  4. Belokurov, V.; et al. (May 2006). "The Field of Streams: Sagittarius and Its Siblings". The Astrophysical Journal. 642 (2): L137–L140. arXiv: astro-ph/0605025 . Bibcode:2006ApJ...642L.137B. doi:10.1086/504797. S2CID   1774643.
  5. Yanny, Brian; Gardner, Susan (Sep 2013). "The Stellar Number Density Distribution in the Local Solar Neighborhood is North-South Asymmetric". The Astrophysical Journal. 777 (2): 91. arXiv: 1309.2300 . Bibcode:2013ApJ...777...91Y. doi:10.1088/0004-637X/777/2/91. S2CID   118314811.