Names | |
---|---|
IUPAC name Labd-14-ene-8,13-diol | |
Systematic IUPAC name (1R,2R,4aS,8aS)-1-[(3R)-3-Hydroxy-3-methylpent-4-en-1-yl]-2,5,5,8a-tetramethyldecahydronaphthalen-2-ol | |
Identifiers | |
3D model (JSmol) | |
ChEBI | |
ChemSpider | |
ECHA InfoCard | 100.007.450 |
KEGG | |
PubChem CID | |
UNII | |
CompTox Dashboard (EPA) | |
| |
| |
Properties | |
C20H36O2 | |
Molar mass | 308.506 g·mol−1 |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa). |
Sclareol is a fragrant chemical compound found in Salvia sclarea , from which it derives its name. It is classified as a bicyclic diterpene alcohol. It is an amber colored solid with a sweet, balsamic scent. [1]
In an experiment in which sclareol was dissolved in jojoba oil and applied to mice, sclareol was detected in the blood (transdermal absorption) 30 minutes after application. [2] In this study, higher concentrations of sclareol were detected in liver homogenates than in blood. Although sclareol accumulation in the liver was suggested, it was concluded that no acute liver dysfunction was seen because AST and ALT were not elevated. Sclareol is also able to kill human leukemic cells and colon cancer cells in vitro by apoptosis. [3] [4]
The epoxyeicosatrienoic acids or EETs are signaling molecules formed within various types of cells by the metabolism of arachidonic acid by a specific subset of cytochrome P450 enzymes termed cytochrome P450 epoxygenases. These nonclassic eicosanoids are generally short-lived, being rapidly converted from epoxides to less active or inactive dihydroxy-eicosatrienoic acids (diHETrEs) by a widely distributed cellular enzyme, soluble epoxide hydrolase (sEH), also termed epoxide hydrolase 2. The EETs consequently function as transiently acting, short-range hormones; that is, they work locally to regulate the function of the cells that produce them or of nearby cells. The EETs have been most studied in animal models where they show the ability to lower blood pressure possibly by a) stimulating arterial vasorelaxation and b) inhibiting the kidney's retention of salts and water to decrease intravascular blood volume. In these models, EETs prevent arterial occlusive diseases such as heart attacks and brain strokes not only by their anti-hypertension action but possibly also by their anti-inflammatory effects on blood vessels, their inhibition of platelet activation and thereby blood clotting, and/or their promotion of pro-fibrinolytic removal of blood clots. With respect to their effects on the heart, the EETs are often termed cardio-protective. Beyond these cardiovascular actions that may prevent various cardiovascular diseases, studies have implicated the EETs in the pathological growth of certain types of cancer and in the physiological and possibly pathological perception of neuropathic pain. While studies to date imply that the EETs, EET-forming epoxygenases, and EET-inactivating sEH can be manipulated to control a wide range of human diseases, clinical studies have yet to prove this. Determination of the role of the EETS in human diseases is made particularly difficult because of the large number of EET-forming epoxygenases, large number of epoxygenase substrates other than arachidonic acid, and the large number of activities, some of which may be pathological or injurious, that the EETs possess.
Cordycepin, or 3'-deoxyadenosine, is a derivative of the nucleoside adenosine, differing from the latter by the replacement of the hydroxy group in the 3' position with a hydrogen. It was initially extracted from the fungus Cordyceps militaris, but can now be produced synthetically. It is also found in other Cordyceps species as well as Ophiocordyceps sinensis.
Ursolic acid, is a pentacyclic triterpenoid identified in the epicuticular waxes of apples as early as 1920 and widely found in the peels of fruits, as well as in herbs and spices like rosemary and thyme.
Growth differentiation factor 11 (GDF11), also known as bone morphogenetic protein 11 (BMP-11), is a protein that in humans is encoded by the growth differentiation factor 11 gene. GDF11 is a member of the Transforming growth factor beta family.
Free fatty acid receptor 3 protein is a G protein coupled receptor that in humans is encoded by the FFAR3 gene. GPRs reside on cell surfaces, bind specific signaling molecules, and thereby are activated to trigger certain functional responses in their parent cells. FFAR3 is a member of the free fatty acid receptor group of GPRs that includes FFAR1, FFAR2, and FFAR4. All of these FFARs are activated by fatty acids. FFAR3 and FFAR2 are activated by certain short-chain fatty acids (SC-FAs), i.e., fatty acids consisting of 2 to 6 carbon atoms whereas FFFAR1 and FFAR4 are activated by certain fatty acids that are 6 to more than 21 carbon atoms long. Hydroxycarboxylic acid receptor 2 is also activated by a SC-FA that activate FFAR3, i.e., butyric acid.
G protein coupled receptor 132, also termed G2A, is classified as a member of the proton sensing G protein coupled receptor (GPR) subfamily. Like other members of this subfamily, i.e. GPR4, GPR68 (OGR1), and GPR65 (TDAG8), G2A is a G protein coupled receptor that resides in the cell surface membrane, senses changes in extracellular pH, and can alter cellular function as a consequence of these changes. Subsequently, G2A was suggested to be a receptor for lysophosphatidylcholine (LPC). However, the roles of G2A as a pH-sensor or LPC receptor are disputed. Rather, current studies suggest that it is a receptor for certain metabolites of the polyunsaturated fatty acid, linoleic acid.
Leukotriene B4 receptor 2, also known as BLT2, BLT2 receptor, and BLTR2, is an Integral membrane protein that is encoded by the LTB4R2 gene in humans and the Ltbr2 gene in mice.
Succinate receptor 1 (SUCNR1), previously named G protein-coupled receptor 91 (GPR91), is a receptor that is activated by succinate, i.e., the anionic form of the dicarboxylic acid, succinic acid. Succinate and succinic acid readily convert into each other by gaining (succinate) or losing (succinic acid) protons, i.e., H+ (see Ions). Succinate is by far the predominant form of this interconversion in living organisms. Succinate is one of the intermediate metabolites in the citric acid cycle (also termed the TCA cycle or tricarboxylic acid cycle). This cycle is a metabolic pathway that operates in the mitochondria of virtually all eucaryotic cells. It consists of a series of biochemical reactions that serve the vital function of releasing the energy stored in nutrient carbohydrates, fats, and proteins. Recent studies have found that some of the metabolites in this cycle are able to regulate various physiological and pathological functions in a wide range of cell types. The succinyl CoA in this cycle may release its bound succinate; succinate is one of these mitochondrial-formed bioactive metabolites.
Hydroxycarboxylic acid receptor 2 (HCA2), also known as GPR109A and niacin receptor 1 (NIACR1), is a protein which in humans is encoded (its formation is directed) by the HCAR2 gene and in rodents by the Hcar2 gene. The human HCAR2 gene is located on the long (i.e., "q") arm of chromosome 12 at position 24.31 (notated as 12q24.31). Like the two other hydroxycarboxylic acid receptors, HCA1 and HCA3, HCA2 is a G protein-coupled receptor (GPCR) located on the surface membrane of cells. HCA2 binds and thereby is activated by D-β-hydroxybutyric acid (hereafter termed β-hydroxybutyric acid), butyric acid, and niacin (also known as nicotinic acid). β-Hydroxybutyric and butyric acids are regarded as the endogenous agents that activate HCA2. Under normal conditions, niacin's blood levels are too low to do so: it is given as a drug in high doses in order to reach levels that activate HCA2.
CD47 also known as integrin associated protein (IAP) is a transmembrane protein that in humans is encoded by the CD47 gene. CD47 belongs to the immunoglobulin superfamily and partners with membrane integrins and also binds the ligands thrombospondin-1 (TSP-1) and signal-regulatory protein alpha (SIRPα). CD-47 acts as a don't eat me signal to macrophages of the immune system which has made it a potential therapeutic target in some cancers, and more recently, for the treatment of pulmonary fibrosis.
MDS1 and EVI1 complex locus protein EVI1 (MECOM) also known as ecotropic virus integration site 1 protein homolog (EVI-1) or positive regulatory domain zinc finger protein 3 (PRDM3) is a protein that in humans is encoded by the MECOM gene. EVI1 was first identified as a common retroviral integration site in AKXD murine myeloid tumors. It has since been identified in a plethora of other organisms, and seems to play a relatively conserved developmental role in embryogenesis. EVI1 is a nuclear transcription factor involved in many signaling pathways for both coexpression and coactivation of cell cycle genes.
Sodium-coupled monocarboxylate transporter 1 (i.e., SMCT1) and sodium-coupled monocarboxylate transporter 2 (i.e., SMCT2) are plasma membrane transport proteins in the solute carrier family. They transport sodium cations in association with the anionic forms (see conjugated base) of certain short-chain fatty acids (i.e., SC-FAs) through the plasma membrane from the outside to the inside of cells. For example, propionic acid (i.e., CH
3CH
2CO
2H) in its anionic "propionate" form (i.e., CH
3CH
2CO−
2) along with sodium cations (i.e., Na+) are co-transported from the extracellular fluid into a SMCT1-epxressing cell's cytoplasm. Monocarboxylate transporters (MCTs) are also transport proteins in the solute carrier family. They co-transport the anionic forms of various compounds into cells in association with proton cations (i.e. H+). Four of the 14 MCTs, i.e. SLC16A1 (i.e., MCT1), SLC16A7 (i.e., MCT22), SLC16A8 (i.e., MCT3), and SLC16A3 (i.e., MCT4), transport some of the same SC-FAs anions that the SMCTs transport into cells. SC-FAs do diffuse into cells independently of transport proteins but at the levels normally occurring in tissues far greater amounts of the SC-FAs are brought into cells that express a SC-FA transporter.
Hyodeoxycholic acid, also known as 3α,6α-Dihydroxy-5β-cholan-24-oic acid or HDCA, is a secondary bile acid, one of the metabolic byproducts of intestinal bacteria. It differs from deoxycholic acid in that the 6α-hydroxyl is in the 12 position in the former. The 6α-hydroxyl group makes HDCA a hydrophilic acid, a property it shares with hyocholic acid. HDCA is present in mammalian species in different proportions. It is the main acid constituent of hog bile, and for this reason it was used industrially as precursor for steroid synthesis before total synthesis became practical.
Gambogic acid is a xanthonoid that is derived from the brownish or orange resin from Garcinia hanburyi. Garcinia hanburyi is a small to medium-sized evergreen tree with smooth grey bark. It is native to Cambodia, southern Vietnam, and Thailand and has been successfully introduced in Singapore.
Sclareol cyclase (EC 3.1.7.4, geranylgeranyl pyrophosphate:sclareol cyclase, geranylgeranyl pyrophosphate-sclareol cyclase, GGPP:sclareol cyclase) is an enzyme with systematic name geranylgeranyl-diphosphate diphosphohydrolase (sclareol-forming). This enzyme catalyses the following chemical reaction
Chrysophanol, also known as chrysophanic acid, is a fungal isolate and a natural anthraquinone. It is a C-3 methyl substituted chrysazin of the trihydroxyanthraquinone family.
Titanocene Y also known as bis[(p-methoxybenzyl)cyclopentadienyl]titanium(IV) dichloride or dichloridobis(η5-(p-methoxybenzyl)cyclopentadienyl)titanium is an organotitanium compound that has been investigated for use as an anticancer drug.
Paraptosis is a type of programmed cell death, morphologically distinct from apoptosis and necrosis. The defining features of paraptosis are cytoplasmic vacuolation, independent of caspase activation and inhibition, and lack of apoptotic morphology. Paraptosis lacks several of the hallmark characteristics of apoptosis, such as membrane blebbing, chromatin condensation, and nuclear fragmentation. Like apoptosis and other types of programmed cell death, the cell is involved in causing its own death, and gene expression is required. This is in contrast to necrosis, which is non-programmed cell death that results from injury to the cell.
HCT116 is a human colon cancer cell line used in therapeutic research and drug screenings.
hPG80 refers to the extracellular and oncogenic version of progastrin. This name first appeared in a scientific publication in January 2020. Until that date, scientific publications only mention 'progastrin', without necessarily explicitly specifying whether it is intracellular or extracellular in the tumor pathological setting.