Sea ice concentration is a useful variable for climate scientists and nautical navigators. It is defined as the area of sea ice relative to the total at a given point in the ocean. This article will deal primarily with its determination from remote sensing measurements.
Sea ice concentration helps determine a number of other important climate variables. Since the albedo of ice is much higher than that of water, ice concentration will regulate insolation in the polar oceans. When combined with ice thickness, it determines several other important fluxes between the air and sea, such as salt and fresh-water fluxes between the polar oceans (see for instance bottom water) as well as heat transfer between the atmosphere. Maps of sea ice concentration can be used to determine Sea ice area and Sea ice extent, both of which are important markers of climate change.
Ice concentration charts are also used by navigators to determine potentially passable regions—see icebreaker.
Measurements from ships and aircraft are based on simply calculating the relative area of ice versus water visible within the scene. This can be done using photographs or by eye. In situ measurements are used to validate remote sensing measurements.
Both synthetic aperture radar and visible sensors (such as Landsat) are normally high enough resolution that each pixel is simply classified as a distinct surface type, i.e. water versus ice. The concentration can then be determined by counting the number of ice pixels in a given area which is useful for validating concentration estimates from lower resolution instruments such as microwave radiometers. Since SAR images are normally monochrome and the backscatter of ice can vary quite considerably, classification is normally done based on texture using groups of pixels—see pattern recognition.
Visible sensors have the disadvantage of being quite weather sensitive—images are obscured by clouds—while SAR sensors, especially in the higher resolution modes, have a limited coverage and must be pointed. This is why the tool of choice for determining ice concentration is often a passive microwave sensor. [1] [2]
All warm bodies emit electro-magnetic radiation: see thermal radiation. Since different objects will emit differently at different frequencies, we can often determine what type of object we are looking at based on its emitted radiation—see spectroscopy. This principle underlies all passive microwave sensors and most passive infrared sensors. Passive is used in the sense that the sensor only measures radiation that has been emitted by other objects but does not emit any of its own. (A SAR sensor, by contrast, is active.) SSMR and SSMI radiometers were flown on the Nimbus program and DMSP series of satellites.
Because clouds are translucent in the microwave regime, especially at lower frequencies, microwave radiometers are quite weather insensitive. Since most microwave radiometers operate along a polar orbit with a broad, sweeping scan, full ice maps of the polar regions where the swaths are largely overlapping can usually be obtained within one day. This frequency and reliability comes at the cost of a poor resolution: the angular field of view of an antenna is directly proportional to the wavelength and inversely proportional to the effective aperture area. Thus we need a large deflector dish to compensate for a low frequency . [1]
Most ice concentration algorithms based on microwave radiometry are predicated on the dual observation that: 1. different surface types have different, strongly clustered, microwave signatures and 2. the radiometric signature at the instrument head is a linear combination of that of the different surface types, with the weights taking on the values of the relative concentrations. If we form a vector space from each of the instrument channels in which all but one of the signatures of the different surface types are linearly independent, then it is straightforward to solve for the relative concentrations:
where is the radiometric signature at the instrument head (normally measured as a brightness temperature), is the signature of the nominal background surface type (normally water), is the signature of the ith surface type while Ci are the relative concentrations. [3] [4] [5]
Every operational ice concentration algorithm is predicated on this principle or a slight variation. The NASA team algorithm, for instance, works by taking the difference of two channels and dividing by their sum. This makes the retrieval slightly nonlinear, but with the advantage that the influence of temperature is mitigated. This is because brightness temperature varies roughly linearly with physical temperature when all other things are equal—see emissivity—and because the sea ice emissivity at different microwave channels is strongly correlated. [3] As the equation suggests, concentrations of multiple ice types can potentially be detected, with NASA team distinguishing between first-year and multi-year ice (see image above). [6] [7]
Accuracies of sea ice concentration derived from passive microwave sensors may be expected to be on the order of 5\% (absolute). [6] [8] [9] A number of factors act to reduce the accuracy of the retrievals, the most obvious being variations in the microwave signatures produced by a given surface type. For sea ice, the presence of snow, variations in salt and moisture content, the presence of melt ponds as well as variations in surface temperature will all produce strong variations in the microwave signature of a given ice type. New and thin ice in particular will often have a microwave signature closer to that of open water. This is normally because of its high salt content, not because of radiation being transmitted from the water through the ice—see sea ice emissivity modelling. The presence of waves and surface roughness will change the signature over open water. Adverse weather conditions, clouds and humidity in particular, will also tend to reduce the accuracy of retrievals. [4]
Satellite temperature measurements are inferences of the temperature of the atmosphere at various altitudes as well as sea and land surface temperatures obtained from radiometric measurements by satellites. These measurements can be used to locate weather fronts, monitor the El Niño-Southern Oscillation, determine the strength of tropical cyclones, study urban heat islands and monitor the global climate. Wildfires, volcanos, and industrial hot spots can also be found via thermal imaging from weather satellites.
A microwave radiometer (MWR) is a radiometer that measures energy emitted at one millimeter-to-metre wavelengths (frequencies of 0.3–300 GHz) known as microwaves. Microwave radiometers are very sensitive receivers designed to measure thermally-emitted electromagnetic radiation. They are usually equipped with multiple receiving channels to derive the characteristic emission spectrum of planetary atmospheres, surfaces or extraterrestrial objects. Microwave radiometers are utilized in a variety of environmental and engineering applications, including remote sensing, weather forecasting, climate monitoring, radio astronomy and radio propagation studies.
Remote sensing is the acquisition of information about an object or phenomenon without making physical contact with the object, in contrast to in situ or on-site observation. The term is applied especially to acquiring information about Earth and other planets. Remote sensing is used in numerous fields, including geophysics, geography, land surveying and most Earth science disciplines. It also has military, intelligence, commercial, economic, planning, and humanitarian applications, among others.
Within the atmospheric sciences, atmospheric physics is the application of physics to the study of the atmosphere. Atmospheric physicists attempt to model Earth's atmosphere and the atmospheres of the other planets using fluid flow equations, radiation budget, and energy transfer processes in the atmosphere. In order to model weather systems, atmospheric physicists employ elements of scattering theory, wave propagation models, cloud physics, statistical mechanics and spatial statistics which are highly mathematical and related to physics. It has close links to meteorology and climatology and also covers the design and construction of instruments for studying the atmosphere and the interpretation of the data they provide, including remote sensing instruments. At the dawn of the space age and the introduction of sounding rockets, aeronomy became a subdiscipline concerning the upper layers of the atmosphere, where dissociation and ionization are important.
The Special Sensor Microwave/Imager (SSM/I) is a seven-channel, four-frequency, linearly polarized passive microwave radiometer system. It is flown on board the United States Air Force Defense Meteorological Satellite Program (DMSP) Block 5D-2 satellites. The instrument measures surface/atmospheric microwave brightness temperatures (TBs) at 19.35, 22.235, 37.0 and 85.5 GHz. The four frequencies are sampled in both horizontal and vertical polarizations, except the 22 GHz which is sampled in the vertical only.
A motion detector is an electrical device that utilizes a sensor to detect nearby motion. Such a device is often integrated as a component of a system that automatically performs a task or alerts a user of motion in an area. They form a vital component of security, automated lighting control, home control, energy efficiency, and other useful systems.
The Advanced Very-High-Resolution Radiometer (AVHRR) instrument is a space-borne sensor that measures the reflectance of the Earth in five spectral bands that are relatively wide by today's standards. AVHRR instruments are or have been carried by the National Oceanic and Atmospheric Administration (NOAA) family of polar orbiting platforms (POES) and European MetOp satellites. The instrument scans several channels; two are centered on the red (0.6 micrometres) and near-infrared (0.9 micrometres) regions, a third one is located around 3.5 micrometres, and another two the thermal radiation emitted by the planet, around 11 and 12 micrometres.
Atmospheric sounding or atmospheric profiling is a measurement of vertical distribution of physical properties of the atmospheric column such as pressure, temperature, wind speed and wind direction, liquid water content, ozone concentration, pollution, and other properties. Such measurements are performed in a variety of ways including remote sensing and in situ observations.
The coastal zone color scanner (CZCS) was a multi-channel scanning radiometer aboard the Nimbus 7 satellite, predominately designed for water remote sensing. Nimbus 7 was launched 24 October 1978, and CZCS became operational on 2 November 1978. It was only designed to operate for one year (as a proof-of-concept), but in fact remained in service until 22 June 1986. Its operation on board the Nimbus 7 was limited to alternate days as it shared its power with the passive microwave scanning multichannel microwave radiometer.
Electro-optical MASINT is a subdiscipline of Measurement and Signature Intelligence, (MASINT) and refers to intelligence gathering activities which bring together disparate elements that do not fit within the definitions of Signals Intelligence (SIGINT), Imagery Intelligence (IMINT), or Human Intelligence (HUMINT).
Sentinel-3 is an Earth observation heavy satellite series developed by the European Space Agency as part of the Copernicus Programme. As of 2024, it consists of 2 satellites: Sentinel-3A and Sentinel-3B. After initial commissioning, each satellite was handed over to EUMETSAT for the routine operations phase of the mission. Two recurrent satellites, Sentinel-3C and Sentinel-3D, will follow in approximately 2025 and 2028 respectively to ensure continuity of the Sentinel-3 mission.
The Community Radiative Transfer Model (CRTM) is a fast radiative transfer model for calculations of radiances for satellite infrared or microwave radiometers.
Frank Wentz is the CEO and director of Remote Sensing Systems, a company he founded in 1974, which specializes in satellite microwave remote sensing research. Together with Carl Mears, he is best known for developing a satellite temperature record from MSU and AMSU. Intercomparison of this record with the earlier UAH satellite temperature record, developed by John Christy and Roy Spencer, revealed deficiencies in the earlier work; specifically, the warming trend in the RSS version is larger than the University of Alabama in Huntsville (UAH) one. From 1978 to 1982, Wentz was a member of NASA's SeaSat Experiment Team involved in the development of physically based retrieval methods for microwave scatterometers and radiometers. He has also investigated the effect of climate change on satellite-derived evaporation, precipitation and surface wind values. His findings are different from most climate change model predictions.
Collocation is a procedure used in remote sensing to match measurements from two or more different instruments. This is done for two main reasons: for validation purposes when comparing measurements of the same variable, and to relate measurements of two different variables either for performing retrievals or for prediction. In the second case the data is later fed into some type of statistical inverse method such as an artificial neural network, statistical classification algorithm, kernel estimator or a linear least squares. In principle, most collocation problems can be solved by a nearest neighbor search, but in practice there are many other considerations involved and the best method is highly specific to the particular matching of instruments. Here we deal with some of the most important considerations along with specific examples.
With increased interest in sea ice and its effects on the global climate, efficient methods are required to monitor both its extent and exchange processes. Satellite-mounted, microwave radiometers, such SSMI, AMSR and AMSU, are an ideal tool for the task because they can see through cloud cover, and they have frequent, global coverage. A passive microwave instrument detects objects through emitted radiation since different substance have different emission spectra. To detect sea ice more efficiently, there is a need to model these emission processes. The interaction of sea ice with electromagnetic radiation in the microwave range is still not well understood. In general is collected information limited because of the large-scale variability due to the emissivity of sea ice.
Water Remote Sensing is the observation of water bodies such as lakes, oceans, and rivers from a distance in order to describe their color, state of ecosystem health, and productivity. Water remote sensing studies the color of water through the observation of the spectrum of water leaving radiance. From the spectrum of color coming from the water, the concentration of optically active components of the upper layer of the water body can be estimated via specific algorithms. Water quality monitoring by remote sensing and close-range instruments has obtained considerable attention since the founding of EU Water Framework Directive.
Satellite surface salinity refers to measurements of surface salinity made by remote sensing satellites. The radiative properties of the ocean surface are exploited in order to estimate the salinity of the water's surface layer.
Remote sensing is used in the geological sciences as a data acquisition method complementary to field observation, because it allows mapping of geological characteristics of regions without physical contact with the areas being explored. About one-fourth of the Earth's total surface area is exposed land where information is ready to be extracted from detailed earth observation via remote sensing. Remote sensing is conducted via detection of electromagnetic radiation by sensors. The radiation can be naturally sourced, or produced by machines and reflected off of the Earth surface. The electromagnetic radiation acts as an information carrier for two main variables. First, the intensities of reflectance at different wavelengths are detected, and plotted on a spectral reflectance curve. This spectral fingerprint is governed by the physio-chemical properties of the surface of the target object and therefore helps mineral identification and hence geological mapping, for example by hyperspectral imaging. Second, the two-way travel time of radiation from and back to the sensor can calculate the distance in active remote sensing systems, for example, Interferometric synthetic-aperture radar. This helps geomorphological studies of ground motion, and thus can illuminate deformations associated with landslides, earthquakes, etc.
Remote sensing in oceanography is a widely used observational technique which enables researchers to acquire data of a location without physically measuring at that location. Remote sensing in oceanography mostly refers to measuring properties of the ocean surface with sensors on satellites or planes, which compose an image of captured electromagnetic radiation. A remote sensing instrument can either receive radiation from the Earth’s surface (passive), whether reflected from the Sun or emitted, or send out radiation to the surface and catch the reflection (active). All remote sensing instruments carry a sensor to capture the intensity of the radiation at specific wavelength windows, to retrieve a spectral signature for every location. The physical and chemical state of the surface determines the emissivity and reflectance for all bands in the electromagnetic spectrum, linking the measurements to physical properties of the surface. Unlike passive instruments, active remote sensing instruments also measure the two-way travel time of the signal; which is used to calculate the distance between the sensor and the imaged surface. Remote sensing satellites often carry other instruments which keep track of their location and measure atmospheric conditions.
The sea surface skin temperature (SSTskin), or ocean skin temperature, is the temperature of the sea surface as determined through its infrared spectrum (3.7–12 μm) and represents the temperature of the sublayer of water at a depth of 10–20 μm. High-resolution data of skin temperature gained by satellites in passive infrared measurements is a crucial constituent in determining the sea surface temperature (SST).