In algebraic geometry, a semistable abelian variety is an abelian variety defined over a global or local field, which is characterized by how it reduces at the primes of the field.
For an abelian variety defined over a field with ring of integers , consider the Néron model of , which is a 'best possible' model of defined over . This model may be represented as a scheme over (cf. spectrum of a ring) for which the generic fibre constructed by means of the morphism gives back . The Néron model is a smooth group scheme, so we can consider , the connected component of the Néron model which contains the identity for the group law. This is an open subgroup scheme of the Néron model. For a residue field , is a group variety over , hence an extension of an abelian variety by a linear group. If this linear group is an algebraic torus, so that is a semiabelian variety, then has semistable reduction at the prime corresponding to . If is a global field, then is semistable if it has good or semistable reduction at all primes.
The fundamental semistable reduction theorem of Alexander Grothendieck states that an abelian variety acquires semistable reduction over a finite extension of . [1]
A semistable elliptic curve may be described more concretely as an elliptic curve that has bad reduction only of multiplicative type. [2] Suppose E is an elliptic curve defined over the rational number field . It is known that there is a finite, non-empty set S of prime numbers p for which E has bad reduction modulo p. The latter means that the curve obtained by reduction of E to the prime field with p elements has a singular point. Roughly speaking, the condition of multiplicative reduction amounts to saying that the singular point is a double point, rather than a cusp. [3] Deciding whether this condition holds is effectively computable by Tate's algorithm. [4] [5] Therefore in a given case it is decidable whether or not the reduction is semistable, namely multiplicative reduction at worst.
The semistable reduction theorem for E may also be made explicit: E acquires semistable reduction over the extension of F generated by the coordinates of the points of order 12. [6] [5]
In mathematics, particularly in algebraic geometry, complex analysis and algebraic number theory, an abelian variety is a projective algebraic variety that is also an algebraic group, i.e., has a group law that can be defined by regular functions. Abelian varieties are at the same time among the most studied objects in algebraic geometry and indispensable tools for much research on other topics in algebraic geometry and number theory.
In mathematics, an algebraic group is an algebraic variety endowed with a group structure which is compatible with its structure as an algebraic variety. Thus the study of algebraic groups belongs both to algebraic geometry and group theory.
In mathematics, a scheme is a mathematical structure that enlarges the notion of algebraic variety in several ways, such as taking account of multiplicities and allowing "varieties" defined over any commutative ring.
In mathematics, the arithmetic of abelian varieties is the study of the number theory of an abelian variety, or a family of abelian varieties. It goes back to the studies of Pierre de Fermat on what are now recognized as elliptic curves; and has become a very substantial area of arithmetic geometry both in terms of results and conjectures. Most of these can be posed for an abelian variety A over a number field K; or more generally.
In mathematics, the étale cohomology groups of an algebraic variety or scheme are algebraic analogues of the usual cohomology groups with finite coefficients of a topological space, introduced by Grothendieck in order to prove the Weil conjectures. Étale cohomology theory can be used to construct ℓ-adic cohomology, which is an example of a Weil cohomology theory in algebraic geometry. This has many applications, such as the proof of the Weil conjectures and the construction of representations of finite groups of Lie type.
In mathematics, a group scheme is a type of object from algebraic geometry equipped with a composition law. Group schemes arise naturally as symmetries of schemes, and they generalize algebraic groups, in the sense that all algebraic groups have group scheme structure, but group schemes are not necessarily connected, smooth, or defined over a field. This extra generality allows one to study richer infinitesimal structures, and this can help one to understand and answer questions of arithmetic significance. The category of group schemes is somewhat better behaved than that of group varieties, since all homomorphisms have kernels, and there is a well-behaved deformation theory. Group schemes that are not algebraic groups play a significant role in arithmetic geometry and algebraic topology, since they come up in contexts of Galois representations and moduli problems. The initial development of the theory of group schemes was due to Alexander Grothendieck, Michel Raynaud and Michel Demazure in the early 1960s.
In mathematics, complex multiplication (CM) is the theory of elliptic curves E that have an endomorphism ring larger than the integers. Put another way, it contains the theory of elliptic functions with extra symmetries, such as are visible when the period lattice is the Gaussian integer lattice or Eisenstein integer lattice.
In mathematics, the Hasse–Weil zeta function attached to an algebraic variety V defined over an algebraic number field K is a meromorphic function on the complex plane defined in terms of the number of points on the variety after reducing modulo each prime number p. It is a global L-function defined as an Euler product of local zeta functions.
This is a glossary of arithmetic and diophantine geometry in mathematics, areas growing out of the traditional study of Diophantine equations to encompass large parts of number theory and algebraic geometry. Much of the theory is in the form of proposed conjectures, which can be related at various levels of generality.
In algebraic geometry, the Néron model for an abelian variety AK defined over the field of fractions K of a Dedekind domain R is the "push-forward" of AK from Spec(K) to Spec(R), in other words the "best possible" group scheme AR defined over R corresponding to AK.
In number theory, the Néron–Tate height is a quadratic form on the Mordell–Weil group of rational points of an abelian variety defined over a global field. It is named after André Néron and John Tate.
In mathematics, Arakelov theory is an approach to Diophantine geometry, named for Suren Arakelov. It is used to study Diophantine equations in higher dimensions.
In mathematics, in Diophantine geometry, the conductor of an abelian variety defined over a local or global field F is a measure of how "bad" the bad reduction at some prime is. It is connected to the ramification in the field generated by the torsion points.
In algebraic number theory, a supersingular prime for a given elliptic curve is a prime number with a certain relationship to that curve. If the curve E is defined over the rational numbers, then a prime p is supersingular for E if the reduction of E modulo p is a supersingular elliptic curve over the residue field Fp.
In mathematics, an arithmetic surface over a Dedekind domain R with fraction field is a geometric object having one conventional dimension, and one other dimension provided by the infinitude of the primes. When R is the ring of integers Z, this intuition depends on the prime ideal spectrum Spec(Z) being seen as analogous to a line. Arithmetic surfaces arise naturally in diophantine geometry, when an algebraic curve defined over K is thought of as having reductions over the fields R/P, where P is a prime ideal of R, for almost all P; and are helpful in specifying what should happen about the process of reducing to R/P when the most naive way fails to make sense.
In mathematics, the Néron–Ogg–Shafarevich criterion states that if A is an elliptic curve or abelian variety over a local field K and ℓ is a prime not dividing the characteristic of the residue field of K then A has good reduction if and only if the ℓ-adic Tate module Tℓ of A is unramified. Andrew Ogg (1967) introduced the criterion for elliptic curves. Serre and Tate (1968) used the results of André Néron (1964) to extend it to abelian varieties, and named the criterion after Ogg, Néron and Igor Shafarevich.
This is a glossary of algebraic geometry.
In mathematics, the conductor of an elliptic curve over the field of rational numbers, or more generally a local or global field, is an integral ideal analogous to the Artin conductor of a Galois representation. It is given as a product of prime ideals, together with associated exponents, which encode the ramification in the field extensions generated by the points of finite order in the group law of the elliptic curve. The primes involved in the conductor are precisely the primes of bad reduction of the curve: this is the Néron–Ogg–Shafarevich criterion.
In algebraic geometry, semistable reduction theorems state that, given a proper flat morphism , there exists a morphism such that is semistable. Precise formulations depend on the specific versions of the theorem. For example, if is the unit disk in , then "semistable" means that the special fiber is a divisor with normal crossings.