Snow hydrology is a scientific study in the field of hydrology which focuses on the composition, dispersion, and movement of snow and ice. Studies of snow hydrology predate the Anno Domini era, although major breakthroughs were not made until the mid eighteenth century.
Snowfall, accumulation and melt are important hydrological processes in watersheds at high altitudes or latitudes. In many western states in the United States, snow melt accounts for a large percentage of the spring runoff that serves as water supply to reservoirs, urban populations and agricultural activities. [1]
A large portion of snow hydrology groups are pursuing new methods for incorporating snow hydrology into distributed models over complex terrain through theoretical developments, model development and testing with field and remote sensing data sets. Snow hydrology is quite complex and involves both mass and energy balance calculations over a time-varying snow pack which is influenced by spatial location in the watershed, interaction with vegetation and redistribution by winds. Some researchers seek to accurately capture snow dynamics at a point and over a domain as the spatial pattern of snow cover area is readily observable from remote sensing. [2]
Snow and ice accounts for around 75% of Earth's entire freshwater volume but lacks the capability of reliable applications. In comparison, the water supplied from rivers and freshwater lakes carries a consistent annual source of water. These natural bodies of water are formed through springs, rainfall and mountainous snow runoff. According to estimates, snow represents about 5% of the precipitation that reaches the Earth's surface. [3] Due to the large amount of water held within these sources, snow hydrology has been a growing study in the field of river tides and seasonal flow rates.
Despite common belief, snow fall is not the main cause for the destruction of organic matter in cold climates. The most damaging aspect is cold temperature winds that exist above the snow pack surface. Studies have shown the insulating properties of snow defend the plants and small animals in the environment from these frigid winds. “The snow itself is the habitat for various micro-organisms like snow worms and algae.” [4] Without consistent annual snowfall, many plants would be destroyed due to frost damage. Both ice worms (Mesenchytraeus Solifugus) and green algae are unique organisms that can live in glacial and snowy habitats.
Though most of the knowledge in the field of snow hydrology has been discovered in the last two centuries, there is evidence that some understanding existed as early as 500-428BC in the Greek states.
Some of the earliest evidence that supports an ancient technical understanding of snow movement was produced by the Greeks. Anaxagoras, an ancient Greek notes:
The upper class Greeks in these city states were shown to have basic understanding of the cooling properties that snow exhibited. Upper class citizens would have hay lined pits dug beneath their homes and bring snow down from the mountains to fill them. Perishable food items could then be stored in these pits for months at a time.
The Christian Bible contains numerous passages in its text that express a basic understanding of the hydrological cycle. Each of the following verses shows fundamental ideas behind the hydrological processes. [6]
One of the earliest modern records of the snow hydrology practice, was introduced by the geologist, Antonio Vallisnieri around the time of the 17th century. His work Theorized, “That rivers arising from springs in the Italian Alps came from rain and snowmelt seeping into underground channels." [5]
The first American research labs were introduced during the 1940s in order to solve the many problems associated with snow movement in the World War II era. These three labs were: [7]
Currently there are hundreds of snow hydrology labs and sensing devices placed throughout the world. As of 2004, every continent was under observation with the exception of Antarctica. Since then, several sensing devices have been established in the Arctic Circle, allowing for constant observation. [8] Using these in part with satellite imaging systems has produced an accurate depiction of underlying landmass, which was unknown in the past.
Snow hydrologists focus specifically on movement and composition of snow and ice, within the field of hydrology. The knowledge gained from this career is most commonly used in weather forecasting and ecological/ agricultural jobs, which require knowledge about the effects of snow migration. They retrieve the information they need through depth, density, and composition readings, as well as various remote sensing techniques. Workers in this field can work for government agencies, research firms and public information services.
The study of snow and glacial movement, though now largely dependent on remote sensing devices, still requires in field techniques to accurately determine the validity of the data. These tools and techniques range from simple, such as a depth spike, to complex, such as the core sampling machines used to check for variations in ice composition. Three common types of terrestrial measurements are: [9]
Remote sensing technology is a recent tool in the field of snow hydrology that was developed in response to a growing outlook in the parametric studies (study of a subject over time) of hydrology formed in the mid 19th century. Compared to the deterministic (concept that there are no random events) approach used in earlier years, this technique created minimal human interaction with the environment and in field equipment. Currently there are thousands of sensing sites around the globe. Each site is capable of receiving data from any number of remote sensing techniques.
The Landsat-MSS is one of the most common used tools. It is capable of detecting and categorizing snow cover into three zones for data calculations. The first zone is an area with 100% snow cover. The second zone is known as the transition zone, which is a mixture of snow covered regions and non snow covered regions. This zone is commonly measured at a 50% snow composition value. The Final zone is snow-free (=aper). The combined reading of these three measurements creates a relatively accurate estimate for the amount of snow within the scanned region. Several detrimental variables for this technique are cloud cover, extreme sunlight and heavy vegetation. [10]
As of 2004, every continent, with the exception of Antarctica has been under regular surveillance through the use of remote sensing satellites.
Several sensing tools are listed below: [11]
Meteorology is the scientific study of weather. It is used in weather forecasting to predict atmospheric events prior to their occurrence. Snow hydrology is used to estimate the characteristics of snowfall in different topographical regions. This includes information on snow depth, density, composition and possible runoff patterns. It is also widely used in the study of natural phenomena such as: blizzards, avalanche, ice pellets and hail in order to help foresee natural disasters. [12]
Glaciology is a similar study to snow hydrology that focuses specially on glacier movement. Glaciers are large masses of ice that are able to slowly migrate over time, through the process of snow accumulation. This study analyzes their past and current growth as well as composition to predict how they have shaped the landmasses they inhabit. Two major studies related to Glaciology are global warming and glacial maximum's (ice ages).
In recent years the most predominant topic related to snow hydrology has been global warming. The underlying concept states that human construction and production of emissions, has created a number of gaseous chemical compounds which add to existing greenhouse gases. Gases such as CO2 and CH4 trap heat in the atmosphere, adding to global climate change. These gases are usually broken down relatively quickly through environmental processes like photosynthesis; however, in recent years, studies have shown their atmospheric composition is increasing. [13] Some studies believe this is a natural part of the Earth's cycle while others claim it is due to the growing amount of fossil fuel emissions and the gradual deforestation of oxygen producing plants. The theory suggests that these changes in temperature, could affect the way ice and snow forms over the Earth's crust, initiating a glacial shifting process, possibly created a rise in sea level from 0.5 meters to 1.5 meters. This change then could influence the salinity of the ocean, causing environmental changes, altering oceanic current and organisms that inhabit it. [14]
A glacier is a persistent body of dense ice that is constantly moving downhill under its own weight. A glacier forms where the accumulation of snow exceeds its ablation over many years, often centuries. It acquires distinguishing features, such as crevasses and seracs, as it slowly flows and deforms under stresses induced by its weight. As it moves, it abrades rock and debris from its substrate to create landforms such as cirques, moraines, or fjords. Although a glacier may flow into a body of water, it forms only on land and is distinct from the much thinner sea ice and lake ice that form on the surface of bodies of water.
Hydrology is the scientific study of the movement, distribution, and management of water on Earth and other planets, including the water cycle, water resources, and drainage basin sustainability. A practitioner of hydrology is called a hydrologist. Hydrologists are scientists studying earth or environmental science, civil or environmental engineering, and physical geography. Using various analytical methods and scientific techniques, they collect and analyze data to help solve water related problems such as environmental preservation, natural disasters, and water management.
Physical geography is one of the three main branches of geography. Physical geography is the branch of natural science which deals with the processes and patterns in the natural environment such as the atmosphere, hydrosphere, biosphere, and geosphere. This focus is in contrast with the branch of human geography, which focuses on the built environment, and technical geography, which focuses on using, studying, and creating tools to obtain, analyze, interpret, and understand spatial information. The three branches have significant overlap, however.
Snow comprises individual ice crystals that grow while suspended in the atmosphere—usually within clouds—and then fall, accumulating on the ground where they undergo further changes. It consists of frozen crystalline water throughout its life cycle, starting when, under suitable conditions, the ice crystals form in the atmosphere, increase to millimeter size, precipitate and accumulate on surfaces, then metamorphose in place, and ultimately melt, slide or sublimate away.
Glaciology is the scientific study of glaciers, or, more generally, ice and natural phenomena that involve ice.
A crevasse is a deep crack that forms in a glacier or ice sheet. Crevasses form as a result of the movement and resulting stress associated with the shear stress generated when two semi-rigid pieces above a plastic substrate have different rates of movement. The resulting intensity of the shear stress causes a breakage along the faces.
The climatic snow line is the boundary between a snow-covered and snow-free surface. The actual snow line may adjust seasonally, and be either significantly higher in elevation, or lower. The permanent snow line is the level above which snow will lie all year.
The Byrd Polar and Climate Research Center (BPCRC) is a polar, alpine, and climate research center at Ohio State University founded in 1960.
In glaciology, an ice cap is a mass of ice that covers less than 50,000 km2 (19,000 sq mi) of land area. Larger ice masses covering more than 50,000 km2 (19,000 sq mi) are termed ice sheets.
Crucial to the survival of a glacier is its mass balance of which surface mass balance (SMB), the difference between accumulation and ablation. Climate change may cause variations in both temperature and snowfall, causing changes in the surface mass balance. Changes in mass balance control a glacier's long-term behavior and are the most sensitive climate indicators on a glacier. From 1980 to 2012 the mean cumulative mass loss of glaciers reporting mass balance to the World Glacier Monitoring Service is −16 m. This includes 23 consecutive years of negative mass balances.
Radioglaciology is the study of glaciers, ice sheets, ice caps and icy moons using ice penetrating radar. It employs a geophysical method similar to ground-penetrating radar and typically operates at frequencies in the MF, HF, VHF and UHF portions of the radio spectrum. This technique is also commonly referred to as "Ice Penetrating Radar (IPR)" or "Radio Echo Sounding (RES)".
Meltwater is water released by the melting of snow or ice, including glacial ice, tabular icebergs and ice shelves over oceans. Meltwater is often found during early spring when snow packs and frozen rivers melt with rising temperatures, and in the ablation zone of glaciers where the rate of snow cover is reducing. Meltwater can be produced during volcanic eruptions, in a similar way in which the more dangerous lahars form. It can also be produced by the heat generated by the flow itself.
The subantarctic zone is a region in the Southern Hemisphere, located immediately north of the Antarctic region. This translates roughly to a latitude of between 46° and 60° south of the Equator. The subantarctic region includes many islands in the southern parts of the Atlantic, Indian, and Pacific oceans, especially those situated north of the Antarctic Convergence. Subantarctic glaciers are, by definition, located on islands within the subantarctic region. All glaciers located on the continent of Antarctica are by definition considered to be Antarctic glaciers.
Snowpack is an accumulation of snow that compresses with time and melts seasonally, often at high elevation or high latitude. Snowpacks are an important water resource that feed streams and rivers as they melt, sometimes leading to flooding. Snowpacks provide water to down-slope communities for drinking and agriculture. High-latitude or high-elevation snowpacks contribute mass to glaciers in their accumulation zones, where annual snow deposition exceeds annual melting.
Earth science or geoscience includes all fields of natural science related to the planet Earth. This is a branch of science dealing with the physical, chemical, and biological complex constitutions and synergistic linkages of Earth's four spheres: the biosphere, hydrosphere/cryosphere, atmosphere, and geosphere. Earth science can be considered to be a branch of planetary science but with a much older history.
The following outline is provided as an overview of and topical guide to hydrology:
The following outline is provided as an overview of and topical guide to geophysics:
A glacier stream is a channelized area that is formed by a glacier in which liquid water accumulates and flows. Glacial streams are also commonly referred to as "glacier stream" or/and "glacial meltwater stream". The movement of the water is influenced and directed by gravity and the melting of ice. The melting of ice forms different types of glacial streams such as supraglacial, englacial, subglacial and proglacial streams. Water enters supraglacial streams that sit at the top of the glacier via filtering through snow in the accumulation zone and forming slush pools at the FIRN zone. The water accumulates on top of the glacier in supraglacial lakes and into supraglacial stream channels. The meltwater then flows through various different streams either entering inside the glacier into englacial channels or under the glacier into subglacial channels. Finally, the water leaves the glacier through proglacial streams or lakes. Proglacial streams do not only act as the terminus point but can also receive meltwater. Glacial streams can play a significant role in energy exchange and in the transport of meltwater and sediment.
Ice drilling allows scientists studying glaciers and ice sheets to gain access to what is beneath the ice, to take measurements along the interior of the ice, and to retrieve samples. Instruments can be placed in the drilled holes to record temperature, pressure, speed, direction of movement, and for other scientific research, such as neutrino detection.
Trevor James Hill Chinn was a New Zealand glaciologist, who conducted extensive surveys of the glaciers of New Zealand's Southern Alps.