Sodium tetrapropylborate

Last updated
Sodium tetrapropylborate
Sodium tetrapropylborate.svg
Names
IUPAC name
Sodium tetrapropylboranuide
Other names
Sodium tetrapropylborate
Sodium tetra-n-propylborate
Identifiers
3D model (JSmol)
ChemSpider
EC Number
  • 808-438-1
MeSH C489231
PubChem CID
  • InChI=1S/C12H28B.Na/c1-5-9-13(10-6-2,11-7-3)12-8-4;/h5-12H2,1-4H3;/q-1;+1
    Key: VKBNWVIDTHWBAZ-UHFFFAOYSA-N
  • CCC[B-](CCC)(CCC)CCC.[Na+]
Properties
(C3H7)4BNa
Molar mass 206.16 g·mol−1
Related compounds
Other anions
Sodium tetraphenylborate
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Sodium tetrapropylborate is an ionic organoboron compound used as a derivatization reagent for chromatography of organometallic pollutants. It is a white hygroscopic powder. [1] It is stable in aqueous solution, but pyrophoric in air; it can be stored as a solution in tetrahydrofuran for multiple weeks. [2]

Contents

Synthesis

Synthesis begins with the propylation of boron trifluoride diethyl etherate with propylmagnesium bromide, yielding tripropylborane:

BF3·(C2H5)2O + 3 C3H7MgBr → B(C3H7)3 + 3 MgBrF + (C2H5)2O

Tripropylborane can then react with propylsodium or with 1-chloropropane and sodium metal to yield the tetrapropylborate. [3]

Applications

The tetrapropylboranuide anion is a reagent for the propylation of organometallic compounds, including organotin, organomercury, and organolead compounds of interest to environmental and public health research.[ according to whom? ] As environmental organometallic contaminants often occur as ions, peralkylation is needed to render them volatile for gas chromatography. This reaction can be performed with Grignard reagents such as propylmagnesium bromide, but their reactivity with water greatly complicates the process for environmental samples.

For any organyl(s) R, the reactions of interest for derivatization proceed as follows: [4]

R4−n(Sn,Pb)n+ + n NaB(C3H7)4 ⇌ R4−n(Sn,Pb)(C3H7)n + n B(C3H7)3 + n Na+
RHg+ + NaB(C3H7)4 ⇌ RHgC3H7 + B(C3H7)3 + Na+

As many organometallic pollutants contain methyl, ethyl, or butyl groups, alkylation with any of these groups would render the pollutants indistinguishable from inorganic material present in the sample: triethyl lead is 100 times as toxic as inorganic lead, [5] but after perethylation, both would yield tetraethyllead.

By introducing propyl groups, less common in pollutants of interest, sodium tetrapropylborate allows the analysis of methyl, ethyl, and butyl compounds in a single process. [1] [2]

Related Research Articles

<span class="mw-page-title-main">Organometallic chemistry</span> Study of organic compounds containing metal(s)

Organometallic chemistry is the study of organometallic compounds, chemical compounds containing at least one chemical bond between a carbon atom of an organic molecule and a metal, including alkali, alkaline earth, and transition metals, and sometimes broadened to include metalloids like boron, silicon, and selenium, as well. Aside from bonds to organyl fragments or molecules, bonds to 'inorganic' carbon, like carbon monoxide, cyanide, or carbide, are generally considered to be organometallic as well. Some related compounds such as transition metal hydrides and metal phosphine complexes are often included in discussions of organometallic compounds, though strictly speaking, they are not necessarily organometallic. The related but distinct term "metalorganic compound" refers to metal-containing compounds lacking direct metal-carbon bonds but which contain organic ligands. Metal β-diketonates, alkoxides, dialkylamides, and metal phosphine complexes are representative members of this class. The field of organometallic chemistry combines aspects of traditional inorganic and organic chemistry.

<span class="mw-page-title-main">Sodium amide</span> Chemical compound

Sodium amide, commonly called sodamide, is the inorganic compound with the formula NaNH2. It is a salt composed of the sodium cation and the azanide anion. This solid, which is dangerously reactive toward water, is white, but commercial samples are typically gray due to the presence of small quantities of metallic iron from the manufacturing process. Such impurities do not usually affect the utility of the reagent. NaNH2 conducts electricity in the fused state, its conductance being similar to that of NaOH in a similar state. NaNH2 has been widely employed as a strong base in organic synthesis.

<span class="mw-page-title-main">Sodium borohydride</span> Chemical compound

Sodium borohydride, also known as sodium tetrahydridoborate and sodium tetrahydroborate, is an inorganic compound with the formula NaBH4. It is a white crystalline solid, usually encountered as an aqueous basic solution. Sodium borohydride is a reducing agent that finds application in papermaking and dye industries. It is also used as a reagent in organic synthesis.

Classical qualitative inorganic analysis is a method of analytical chemistry which seeks to find the elemental composition of inorganic compounds. It is mainly focused on detecting ions in an aqueous solution, therefore materials in other forms may need to be brought to this state before using standard methods. The solution is then treated with various reagents to test for reactions characteristic of certain ions, which may cause color change, precipitation and other visible changes.

<span class="mw-page-title-main">Organotin chemistry</span> Branch of organic chemistry

Organotin chemistry is the scientific study of the synthesis and properties of organotin compounds or stannanes, which are organometallic compounds containing tin–carbon bonds. The first organotin compound was diethyltin diiodide, discovered by Edward Frankland in 1849. The area grew rapidly in the 1900s, especially after the discovery of the Grignard reagents, which are useful for producing Sn–C bonds. The area remains rich with many applications in industry and continuing activity in the research laboratory.

<span class="mw-page-title-main">Trimethylsilyl group</span> Functional group

A trimethylsilyl group (abbreviated TMS) is a functional group in organic chemistry. This group consists of three methyl groups bonded to a silicon atom [−Si(CH3)3], which is in turn bonded to the rest of a molecule. This structural group is characterized by chemical inertness and a large molecular volume, which makes it useful in a number of applications.

<span class="mw-page-title-main">1-Bromobutane</span> Chemical compound

1-Bromobutane is the organobromine compound with the formula CH3(CH2)3Br. It is a colorless liquid, although impure samples appear yellowish. It is insoluble in water, but soluble in organic solvents. It is primarily used as a source of the butyl group in organic synthesis. It is one of several isomers of butyl bromide.

Boron trichloride is the inorganic compound with the formula BCl3. This colorless gas is a reagent in organic synthesis. It is highly reactive towards water.

<span class="mw-page-title-main">Lithium sulfate</span> Chemical compound

Lithium sulfate is a white inorganic salt with the formula Li2SO4. It is the lithium salt of sulfuric acid.

<span class="mw-page-title-main">Organomercury chemistry</span> Group of chemical compounds containing mercury

Organomercury chemistry refers to the study of organometallic compounds that contain mercury. Typically the Hg–C bond is stable toward air and moisture but sensitive to light. Important organomercury compounds are the methylmercury(II) cation, CH3Hg+; ethylmercury(II) cation, C2H5Hg+; dimethylmercury, (CH3)2Hg, diethylmercury and merbromin ("Mercurochrome"). Thiomersal is used as a preservative for vaccines and intravenous drugs.

Chloramines refer to derivatives of ammonia and organic amines wherein one or more N−H bonds have been replaced by N−Cl bonds. Two classes of compounds are considered: inorganic chloramines and organic chloramines. Chloramines are the most widely used members of the halamines.

<span class="mw-page-title-main">Organozinc chemistry</span>

Organozinc chemistry is the study of the physical properties, synthesis, and reactions of organozinc compounds, which are organometallic compounds that contain carbon (C) to zinc (Zn) chemical bonds.

<span class="mw-page-title-main">Organolead chemistry</span>

Organolead chemistry is the scientific study of the synthesis and properties of organolead compounds, which are organometallic compounds containing a chemical bond between carbon and lead. The first organolead compound was hexaethyldilead (Pb2(C2H5)6), first synthesized in 1858. Sharing the same group with carbon, lead is tetravalent.

Organosodium chemistry is the chemistry of organometallic compounds containing a carbon to sodium chemical bond. The application of organosodium compounds in chemistry is limited in part due to competition from organolithium compounds, which are commercially available and exhibit more convenient reactivity.

<span class="mw-page-title-main">Phenylsodium</span> Chemical compound

Phenylsodium C6H5Na is an organosodium compound. Solid phenylsodium was first isolated by Nef in 1903. Although the behavior of phenylsodium and phenyl magnesium bromide are similar, the organosodium compound is very rarely used.

Silver hyponitrite is an ionic compound with formula Ag2N2O2 or (Ag+
)2[ON=NO]2−, containing monovalent silver cations and hyponitrite anions. It is a bright yellow solid practically insoluble in water and most organic solvents, including DMF and DMSO.

Cobalt compounds are chemical compounds formed by cobalt with other elements.

<span class="mw-page-title-main">Copper compounds</span> Chemical compounds containing copper

Copper forms a rich variety of compounds, usually with oxidation states +1 and +2, which are often called cuprous and cupric, respectively. Copper compounds, whether organic complexes or organometallics, promote or catalyse numerous chemical and biological processes.

n-Propylmagnesium bromide, often referred to as simply propylmagnesium bromide, is an organomagnesium compound with the chemical formula C3H6MgBr. As the Grignard reagent derived from 1-bromopropane, it is used for the n-propylation of electrophiles in organic synthesis.

References

  1. 1 2 De Smaele, Tom; Moens, Luc; Dams, Richard; Sandra, Pat; Van Der Eycken, Johan; Vandyck, Jos (1998). "Sodium tetra(n-propyl)borate: A novel aqueous in situ derivatization reagent for the simultaneous determination of organomercury, -lead and -tin compounds with capillary gas chromatography–inductively coupled plasma mass spectrometry". Journal of Chromatography A. 793: 99–106. doi:10.1016/S0021-9673(97)00886-8.
  2. 1 2 Schubert, P.; Rosenberg, E.; Grasserbauer, M. (2000). "Comparison of sodium tetraethylborate and sodium tetra(n-propyl)borate as derivatization reagent for the speciation of organotin and organolead compounds in water samples". Fresenius' Journal of Analytical Chemistry. 366 (4): 356–360. doi:10.1007/s002160050072. PMID   11220318.
  3. Honeycutt, Julian B.; Riddle, James M. (1961). "Preparation and Reactions of Sodium Tetraethylboron and Related Compounds1". Journal of the American Chemical Society. 83 (2): 369–373. doi:10.1021/ja01463a027.
  4. Huang, Jen-How; Matzner, Egbert (2004). "Biogeochemistry of organotin compounds and tin in a forested catchment in Germany". Science of the Total Environment. 332 (1–3): 231–241. Bibcode:2004ScTEn.332..231H. doi:10.1016/j.scitotenv.2004.04.015. PMID   15336905.
  5. Zhang, Xu; Yang, Huanhuan; Cui, Yan; Ren, Zhen; Sun, Ruirui (2021). "Comparison of two extraction methods for the determination of organolead compounds using sodium tetrapropylborate as derivatization reagent". Resources, Environment and Sustainability. 6. Bibcode:2021REnvS...600035Z. doi: 10.1016/j.resenv.2021.100035 .