Spherical circle

Last updated
Small circle of a sphere. Small circle.svg
Small circle of a sphere.

In spherical geometry, a spherical circle (often shortened to circle) is the locus of points on a sphere at constant spherical distance (the spherical radius) from a given point on the sphere (the pole or spherical center). It is a curve of constant geodesic curvature relative to the sphere, analogous to a line or circle in the Euclidean plane; the curves analogous to straight lines are called great circles , and the curves analogous to planar circles are called small circles or lesser circles. If the sphere is embedded in three-dimensional Euclidean space, its circles are the intersections of the sphere with planes, and the great circles are intersections with planes passing through the center of the sphere.

Contents

Fundamental concepts

Intrinsic characterization

A spherical circle with zero geodesic curvature is called a great circle, and is a geodesic analogous to a straight line in the plane. A great circle separates the sphere into two equal hemispheres , each with the great circle as its boundary. If a great circle passes through a point on the sphere, it also passes through the antipodal point (the unique furthest other point on the sphere). For any pair of distinct non-antipodal points, a unique great circle passes through both. Any two points on a great circle separate it into two arcs analogous to line segments in the plane; the shorter is called the minor arc and is the shortest path between the points, and the longer is called the major arc.

A circle with non-zero geodesic curvature is called a small circle, and is analogous to a circle in the plane. A small circle separates the sphere into two spherical disks or spherical caps , each with the circle as its boundary. For any triple of distinct non-antipodal points a unique small circle passes through all three. Any two points on the small circle separate it into two arcs, analogous to circular arcs in the plane.

Every circle has two antipodal poles (or centers) intrinsic to the sphere. A great circle is equidistant to its poles, while a small circle is closer to one pole than the other. Concentric circles are sometimes called parallels, because they each have constant distance to each-other, and in particular to their concentric great circle, and are in that sense analogous to parallel lines in the plane.

Extrinsic characterization

B
C
2
=
A
B
2
+
A
C
2
{\displaystyle BC^{2}=AB^{2}+AC^{2}}
, where C is the center of the sphere, A is the center of the small circle, and B is a point in the boundary of the small circle. Therefore, knowing the radius of the sphere, and the distance from the plane of the small circle to C, the radius of the small circle can be determined using the Pythagorean theorem. Esfera-raio-circulomenor.png
, where C is the center of the sphere, A is the center of the small circle, and B is a point in the boundary of the small circle. Therefore, knowing the radius of the sphere, and the distance from the plane of the small circle to C, the radius of the small circle can be determined using the Pythagorean theorem.

If the sphere is isometrically embedded in Euclidean space, the sphere's intersection with a plane is a circle, which can be interpreted extrinsically to the sphere as a Euclidean circle: a locus of points in the plane at a constant Euclidean distance (the extrinsic radius) from a point in the plane (the extrinsic center). A great circle lies on a plane passing through the center of the sphere, so its extrinsic radius is equal to the radius of the sphere itself, and its extrinsic center is the sphere's center. A small circle lies on a plane not passing through the sphere's center, so its extrinsic radius is smaller than that of the sphere and its extrinsic center is an arbitrary point in the interior of the sphere. Parallel planes cut the sphere into parallel (concentric) small circles; the pair of parallel planes tangent to the sphere are tangent at the poles of these circles, and the diameter through these poles, passing through the sphere's center and perpendicular to the parallel planes, is called the axis of the parallel circles.

The sphere's intersection with a second sphere is also a circle, and the sphere's intersection with a concentric right circular cylinder or right circular cone is a pair of antipodal circles.

Applications

Geodesy

In the geographic coordinate system on a globe, the parallels of latitude are small circles, with the Equator the only great circle. By contrast, all meridians of longitude, paired with their opposite meridian in the other hemisphere, form great circles.

Related Research Articles

<span class="mw-page-title-main">Sphere</span> Set of points equidistant from a center

A sphere is a geometrical object that is a three-dimensional analogue to a two-dimensional circle. Formally, a sphere is the set of points that are all at the same distance r from a given point in three-dimensional space. That given point is the center of the sphere, and r is the sphere's radius. The earliest known mentions of spheres appear in the work of the ancient Greek mathematicians.

<span class="mw-page-title-main">Great circle</span> Spherical geometry analog of a straight line

In mathematics, a great circle or orthodrome is the circular intersection of a sphere and a plane passing through the sphere's center point.

<span class="mw-page-title-main">Curvature</span> Mathematical measure of how much a curve or surface deviates from flatness

In mathematics, curvature is any of several strongly related concepts in geometry that intuitively measure the amount by which a curve deviates from being a straight line or by which a surface deviates from being a plane. If a curve or surface is contained in a larger space, curvature can be defined extrinsically relative to the ambient space. Curvature of Riemannian manifolds of dimension at least two can be defined intrinsically without reference to a larger space.

<span class="mw-page-title-main">Stereographic projection</span> Particular mapping that projects a sphere onto a plane

In mathematics, a stereographic projection is a perspective projection of the sphere, through a specific point on the sphere, onto a plane perpendicular to the diameter through the point. It is a smooth, bijective function from the entire sphere except the center of projection to the entire plane. It maps circles on the sphere to circles or lines on the plane, and is conformal, meaning that it preserves angles at which curves meet and thus locally approximately preserves shapes. It is neither isometric nor equiareal.

<span class="mw-page-title-main">Spherical geometry</span> Geometry of the surface of a sphere

Spherical geometry or spherics is the geometry of the two-dimensional surface of a sphere or the n-dimensional surface of higher dimensional spheres.

Elliptic geometry is an example of a geometry in which Euclid's parallel postulate does not hold. Instead, as in spherical geometry, there are no parallel lines since any two lines must intersect. However, unlike in spherical geometry, two lines are usually assumed to intersect at a single point. Because of this, the elliptic geometry described in this article is sometimes referred to as single elliptic geometry whereas spherical geometry is sometimes referred to as double elliptic geometry.

<span class="mw-page-title-main">Hyperbolic geometry</span> Non-Euclidean geometry

In mathematics, hyperbolic geometry is a non-Euclidean geometry. The parallel postulate of Euclidean geometry is replaced with:

<span class="mw-page-title-main">24-cell</span> Regular object in four dimensional geometry

In four-dimensional geometry, the 24-cell is the convex regular 4-polytope (four-dimensional analogue of a Platonic solid) with Schläfli symbol {3,4,3}. It is also called C24, or the icositetrachoron, octaplex (short for "octahedral complex"), icosatetrahedroid, octacube, hyper-diamond or polyoctahedron, being constructed of octahedral cells.

In geometry, inversive geometry is the study of inversion, a transformation of the Euclidean plane that maps circles or lines to other circles or lines and that preserves the angles between crossing curves. Many difficult problems in geometry become much more tractable when an inversion is applied. Inversion seems to have been discovered by a number of people contemporaneously, including Steiner (1824), Quetelet (1825), Bellavitis (1836), Stubbs and Ingram (1842–3) and Kelvin (1845).

<span class="mw-page-title-main">Antipodal point</span> Pair of diametrically opposite points on a circle, sphere, or hypersphere

In mathematics, two points of a sphere are called antipodal or diametrically opposite if they are the endpoints of a diameter, a straight line segment between two points on a sphere and passing through its center.

<span class="mw-page-title-main">Great-circle distance</span> Shortest distance between two points on the surface of a sphere

The great-circle distance, orthodromic distance, or spherical distance is the distance between two points on a sphere, measured along the great-circle arc between them. This arc is the shortest path between the two points on the surface of the sphere.

<span class="mw-page-title-main">Gnomonic projection</span> Projection of a sphere through its center onto a plane

A gnomonic projection, also known as a central projection or rectilinear projection, is a perspective projection of a sphere, with center of projection at the sphere's center, onto any plane not passing through the center, most commonly a tangent plane. Under gnomonic projection every great circle on the sphere is projected to a straight line in the plane. More generally, a gnomonic projection can be taken of any n-dimensional hypersphere onto a hyperplane.

<span class="mw-page-title-main">Pencil (geometry)</span> Family of geometric objects with a common property

In geometry, a pencil is a family of geometric objects with a common property, for example the set of lines that pass through a given point in a plane, or the set of circles that pass through two given points in a plane.

<span class="mw-page-title-main">Beltrami–Klein model</span> Model of hyperbolic geometry

In geometry, the Beltrami–Klein model, also called the projective model, Klein disk model, and the Cayley–Klein model, is a model of hyperbolic geometry in which points are represented by the points in the interior of the unit disk and lines are represented by the chords, straight line segments with ideal endpoints on the boundary sphere.

<span class="mw-page-title-main">Horocycle</span> Curve whose normals converge asymptotically

In hyperbolic geometry, a horocycle, sometimes called an oricycle or limit circle, is a curve of constant curvature which converges asymptotically in both directions to a single ideal point, called the centre of the horocycle. The perpendicular geodesics through every point on a horocycle are limiting parallels, and also all converge asymptotically to the centre. It is the two-dimensional case of a horosphere.

<span class="mw-page-title-main">Differential geometry of surfaces</span> The mathematics of smooth surfaces

In mathematics, the differential geometry of surfaces deals with the differential geometry of smooth surfaces with various additional structures, most often, a Riemannian metric. Surfaces have been extensively studied from various perspectives: extrinsically, relating to their embedding in Euclidean space and intrinsically, reflecting their properties determined solely by the distance within the surface as measured along curves on the surface. One of the fundamental concepts investigated is the Gaussian curvature, first studied in depth by Carl Friedrich Gauss, who showed that curvature was an intrinsic property of a surface, independent of its isometric embedding in Euclidean space.

<span class="mw-page-title-main">Concentric objects</span> Geometric objects with a common centre

In geometry, two or more objects are said to be concentric when they share the same center. Any pair of objects with well-defined centers can be concentric, including circles, spheres, regular polygons, regular polyhedra, parallelograms, cones, conic sections, and quadrics.

<span class="mw-page-title-main">Poincaré disk model</span> Model of hyperbolic geometry

In geometry, the Poincaré disk model, also called the conformal disk model, is a model of 2-dimensional hyperbolic geometry in which all points are inside the unit disk, and straight lines are either circular arcs contained within the disk that are orthogonal to the unit circle or diameters of the unit circle.

<span class="mw-page-title-main">Spherical conic</span> Curve on the sphere analogous to an ellipse or hyperbola

In mathematics, a spherical conic or sphero-conic is a curve on the sphere, the intersection of the sphere with a concentric elliptic cone. It is the spherical analog of a conic section in the plane, and as in the planar case, a spherical conic can be defined as the locus of points the sum or difference of whose great-circle distances to two foci is constant. By taking the antipodal point to one focus, every spherical ellipse is also a spherical hyperbola, and vice versa. As a space curve, a spherical conic is a quartic, though its orthogonal projections in three principal axes are planar conics. Like planar conics, spherical conics also satisfy a "reflection property": the great-circle arcs from the two foci to any point on the conic have the tangent and normal to the conic at that point as their angle bisectors.

<span class="mw-page-title-main">Lexell's theorem</span> Characterizes spherical triangles with fixed base and area

In spherical geometry, Lexell's theorem holds that every spherical triangle with the same surface area on a fixed base has its apex on a small circle, called Lexell's circle or Lexell's locus, passing through each of the two points antipodal to the two base vertices.

References