Spinning (polymers)

Last updated

Spinning is a manufacturing process for creating polymer fibers. It is a specialized form of extrusion that uses a spinneret to form multiple continuous filaments. [1]

Contents

Melt Spinning

If the polymer is a thermoplastic then it can undergo melt spinning. The molten polymer is extruded through a spinneret composed of capillaries where the resulting filament is solidified by cooling. Nylon, olefin, polyester, saran, and sulfar are produced via this process. [1]

Extrusion spinning

Pellets or granules of the solid polymer are fed into an extruder. The pellets are compressed, heated and melted by an extrusion screw, then fed to a spinning pump and into the spinneret.

Direct spinning

The direct spinning process avoids the stage of solid polymer pellets. The polymer melt is produced from the raw materials, and then from the polymer finisher directly pumped to the spinning mill. Direct spinning is mainly applied during production of polyester fibers and filaments and is dedicated to high production capacity (>100 ton/day).

Solution Spinning

If the melting temperature of the polymer is higher than its degradation temperature, the polymer must undergo solution spinning techniques for fiber formation. The polymer is first dissolved in a solvent forming a spinning solution (sometimes called a "dope"). The spinning solution then undergoes dry, wet, dry-jet wet, gel, or electrospinning techniques.

Dry spinning

A spinning solution consisting of polymer and a volatile solvent is extruded through a spinneret into an evaporating chamber. A stream of hot air impinges on the jets of spinning solution emerging from the spinneret, evaporating the solvent, and solidifying the filaments. Solution blow spinning is a similar technique where polymer solution is sprayed directly onto a target to produce a nonwoven fiber mat. [2]

Wet spinning

Wet spinning is the oldest of the five processes. The polymer is dissolved in a spinning solvent where it is extruded out through a spinneret submerged in a coagulation bath composed of nonsolvents. The coagulation bath causes the polymer to precipitate in fiber form. Acrylic, rayon, aramid, modacrylic, and spandex are produced via this process. [1]

A variant of wet spinning is dry-jet wet spinning, where the spinning solution passes through an air-gap prior to being submerged into the coagulation bath. This method is used in Lyocell spinning of dissolved cellulose, and can lead to higher polymer orientation due to the higher stretchability of the spinning solution versus the precipitated fiber.

Gel spinning

Gel spinning, also known as semi-melt spinning, is used to obtain high strength or other special properties in the fibers. Instead of wet spinning, which relies on precipitation as the main mechanism for solidification, gel spinning relies on temperature-induced physical gelation as the primary method for solidification. The resulting gelled fiber is then swollen with the spinning solvent (similar to gelatin desserts) which keeps the polymer chains somewhat bound together, resisting relaxation which is prevalent in wet spinning. The high solvent retention allows for ultra-high drawing as with ultra high molecular weight polyethylene (UHMWPE) (e.g., Spectra®) to produce fibers with a high degree of orientation, which increases fiber strength. The fibers are first cooled either with air or in a liquid bath to induce gelation, then the solvent is removed through ageing in a nonsolvent, or during the drawing stage. Some high strength polyethylene and polyacrylonitrile fibers are produced via this process. [1]

Electrospinning

Electrospinning uses an electrical charge to draw very fine (typically on the micro or nano scale) fibres from a liquid - either a polymer solution or a polymer melt. Electrospinning shares characteristics of both electrospraying and conventional solution dry spinning [3] of fibers. The process does not require the use of coagulation chemistry or high temperatures to produce solid threads from solution. This makes the process particularly suited to the production of fibers using large and complex molecules. Melt electrospinning is also practiced; this method ensures that no solvent can be carried over into the final product. [4] [5]

Post-Spin Processes

Drawing

Finally, the fibers are drawn to increase strength and orientation. This may be done while the polymer is still solidifying or after it has completely cooled. [1]

See also

Related Research Articles

<span class="mw-page-title-main">Rayon</span> Cellulose-based semi-synthetic fiber

Rayon, also called viscose and commercialised in some countries as sabra silk or cactus silk, is a semi-synthetic fiber, made from natural sources of regenerated cellulose, such as wood and related agricultural products. It has the same molecular structure as cellulose. Many types and grades of viscose fibers and films exist. Some imitate the feel and texture of natural fibers such as silk, wool, cotton, and linen. The types that resemble silk are often called artificial silk. It is used to make textiles for clothing and other purposes.

<span class="mw-page-title-main">Cellulose acetate</span> Organic compounds which are acetate esters of cellulose

In biochemistry, cellulose acetate refers to any acetate ester of cellulose, usually cellulose diacetate. It was first prepared in 1865. A bioplastic, cellulose acetate is used as a film base in photography, as a component in some coatings, and as a frame material for eyeglasses; it is also used as a synthetic fiber in the manufacture of cigarette filters and playing cards. In photographic film, cellulose acetate film replaced nitrate film in the 1950s, being far less flammable and cheaper to produce.

<span class="mw-page-title-main">Lyocell</span> Regenerated cellulose fiber made from dissolving pulp

Lyocell is a semi-synthetic fiber used to make textiles for clothing and other purposes. It is a form of regenerated cellulose made by dissolving pulp and dry jet-wet spinning. Unlike rayon made by some of the more common viscose processes, Lyocell production does not use carbon disulfide, which is toxic to workers and the environment. Lyocell was originally trademarked as Tencel in 1982.

<span class="mw-page-title-main">Extrusion</span> Process of pushing material through a die to create long symmetrical-shaped objects

Extrusion is a process used to create objects of a fixed cross-sectional profile by pushing material through a die of the desired cross-section. Its two main advantages over other manufacturing processes are its ability to create very complex cross-sections; and to work materials that are brittle, because the material encounters only compressive and shear stresses. It also creates excellent surface finish and gives considerable freedom of form in the design process.

<span class="mw-page-title-main">PET bottle recycling</span> Recycling of bottles made of polyethylene terephthalate

Although PET is used in several applications,, as of 2022 only bottles are collected at a substantial scale. The main motivations have been either cost reduction or recycle content of retail goods. An increasing amount is recycled back into bottles, the rest goes into fibres, film, thermoformed packaging and strapping. After sorting, cleaning and grinding, 'bottle flake' is obtained, which is then processed by either:

<span class="mw-page-title-main">Electrospinning</span>

Electrospinning is a fiber production method that uses electric force to draw charged threads of polymer solutions or polymer melts up to fiber diameters in the order of some hundred nanometers. Electrospinning shares characteristics of both electrospraying and conventional solution dry spinning of fibers. The process does not require the use of coagulation chemistry or high temperatures to produce solid threads from solution. This makes the process particularly suited to the production of fibers using large and complex molecules. Electrospinning from molten precursors is also practiced; this method ensures that no solvent can be carried over into the final product.

Polyamide-imides are either thermosetting or thermoplastic, amorphous polymers that have exceptional mechanical, thermal and chemical resistant properties. Polyamide-imides are used extensively as wire coatings in making magnet wire. They are prepared from isocyanates and TMA in N-methyl-2-pyrrolidone (NMP). A prominent distributor of polyamide-imides is Solvay Specialty Polymers, which uses the trademark Torlon.

<span class="mw-page-title-main">Acrylic fiber</span> Synthetic fiber made from polymer

Acrylic fibers are synthetic fibers made from a polymer (polyacrylonitrile) with an average molecular weight of ~100,000, about 1900 monomer units. For a fiber to be called "acrylic" in the US, the polymer must contain at least 85% acrylonitrile monomer. Typical comonomers are vinyl acetate or methyl acrylate. DuPont created the first acrylic fibers in 1941 and trademarked them under the name Orlon. It was first developed in the mid-1940s but was not produced in large quantities until the 1950s. Strong and warm acrylic fiber is often used for sweaters and tracksuits and as linings for boots and gloves, as well as in furnishing fabrics and carpets. It is manufactured as a filament, then cut into short staple lengths similar to wool hairs, and spun into yarn.

Ultra-high-molecular-weight polyethylene is a subset of the thermoplastic polyethylene. Also known as high-modulus polyethylene (HMPE), it has extremely long chains, with a molecular mass usually between 3.5 and 7.5 million amu. The longer chain serves to transfer load more effectively to the polymer backbone by strengthening intermolecular interactions. This results in a very tough material, with the highest impact strength of any thermoplastic presently made.

<span class="mw-page-title-main">Nonwoven fabric</span> Sheet of fibers

Nonwoven fabric is a fabric-like material made from staple fibre (short) and long fibres, bonded together by chemical, mechanical, heat or solvent treatment. The term is used in the textile manufacturing industry to denote fabrics, such as felt, which are neither woven nor knitted. Some non-woven materials lack sufficient strength unless densified or reinforced by a backing. In recent years, non-wovens have become an alternative to polyurethane foam.

<span class="mw-page-title-main">Nanofiber</span>

Nanofibers are fibers with diameters in the nanometer range. Nanofibers can be generated from different polymers and hence have different physical properties and application potentials. Examples of natural polymers include collagen, cellulose, silk fibroin, keratin, gelatin and polysaccharides such as chitosan and alginate. Examples of synthetic polymers include poly(lactic acid) (PLA), polycaprolactone (PCL), polyurethane (PU), poly(lactic-co-glycolic acid) (PLGA), poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), and poly(ethylene-co-vinylacetate) (PEVA). Polymer chains are connected via covalent bonds. The diameters of nanofibers depend on the type of polymer used and the method of production. All polymer nanofibers are unique for their large surface area-to-volume ratio, high porosity, appreciable mechanical strength, and flexibility in functionalization compared to their microfiber counterparts.

<span class="mw-page-title-main">Plastic extrusion</span> Melted plastic manufacturing process

Plastics extrusion is a high-volume manufacturing process in which raw plastic is melted and formed into a continuous profile. Extrusion produces items such as pipe/tubing, weatherstripping, fencing, deck railings, window frames, plastic films and sheeting, thermoplastic coatings, and wire insulation.

Olefin fiber is a synthetic fiber made from a polyolefin, such as polypropylene or polyethylene. It is used in wallpaper, carpeting, ropes, and vehicle interiors.

<span class="mw-page-title-main">Nanofabrics</span> Textiles engineered with small particles that give ordinary materials advantageous properties

Nanofabrics are textiles engineered with small particles that give ordinary materials advantageous properties such as superhydrophobicity, odor and moisture elimination, increased elasticity and strength, and bacterial resistance. Depending on the desired property, a nanofabric is either constructed from nanoscopic fibers called nanofibers, or is formed by applying a solution containing nanoparticles to a regular fabric. Nanofabrics research is an interdisciplinary effort involving bioengineering, molecular chemistry, physics, electrical engineering, computer science, and systems engineering. Applications of nanofabrics have the potential to revolutionize textile manufacturing and areas of medicine such as drug delivery and tissue engineering.

<span class="mw-page-title-main">Spinneret (polymers)</span> Any structure natural or artificial used to extrude polymers into fibers

A spinneret is a device used to extrude a polymer solution or polymer melt to form fibers. Streams of viscous polymer exit via the spinneret into air or liquid leading to a phase inversion which allows the polymer to solidify. The individual polymer chains tend to align in the fiber because of viscous flow. This airstream liquid-to-fiber formation process is similar to the production process for cotton candy. The fiber production process is generally referred to as "spinning". Depending on the type of spinneret used, either solid or hollow fibers can be formed. Spinnerets are also used for electrospinning and electrospraying applications. They are sometimes called coaxial needles, or coaxial emitters.

<span class="mw-page-title-main">Melt electrospinning</span>

Melt electrospinning is a processing technique to produce fibrous structures from polymer melts for applications that include tissue engineering, textiles and filtration. In general, electrospinning can be performed using either polymer melts or polymer solutions. However, melt electrospinning is distinct in that the collection of the fiber can very focused; combined with moving collectors, melt electrospinning writing is a way to perform 3D printing. Since volatile solvents are not used, there are benefits for some applications where solvent toxicity and accumulation during manufacturing are a concern.

A die in polymer processing is a metal restrictor or channel capable of providing a constant cross sectional profile to a stream of liquid polymer. This allows for continuous processing of shapes such as sheets, films, pipes, rods, and other more complex profiles. This is a continuous process, allowing for constant production, as opposed to a sequential (non-constant) process such as injection molding.

<span class="mw-page-title-main">Hollow fiber membrane</span> Class of artificial membranes containing a semi-permeable hollow fiber barrier

Hollow fiber membranes (HFMs) are a class of artificial membranes containing a semi-permeable barrier in the form of a hollow fiber. Originally developed in the 1960s for reverse osmosis applications, hollow fiber membranes have since become prevalent in water treatment, desalination, cell culture, medicine, and tissue engineering. Most commercial hollow fiber membranes are packed into cartridges which can be used for a variety of liquid and gaseous separations.

<span class="mw-page-title-main">Melt blowing</span> Micro- and nanofiber fabrication method

Melt blowing is a conventional fabrication method of micro- and nanofibers where a polymer melt is extruded through small nozzles surrounded by high speed blowing gas. The randomly deposited fibers form a nonwoven sheet product applicable for filtration, sorbents, apparels and drug delivery systems. The substantial benefits of melt blowing are simplicity, high specific productivity and solvent-free operation. Choosing an appropriate combination of polymers with optimized rheological and surface properties, scientists have been able to produce melt-blown fibers with an average diameter as small as 36 nm.

<span class="mw-page-title-main">Hydrogel fiber</span>

Hydrogel fiber is a hydrogel made into a fibrous state, where its width is significantly smaller than its length. The hydrogel's specific surface area at fibrous form is larger than that of the bulk hydrogel, and its mechanical properties also changed accordingly. As a result of these changes, hydrogel fiber has a faster matter exchange rate and can be woven into different structures.

References

  1. 1 2 3 4 5 Manufacturing: Synthetic and Cellulosic Fiber Formation Technology, archived from the original on 1998-05-26, retrieved 2008-11-19.
  2. Daristotle, John L.; Behrens, Adam M.; Sandler, Anthony D.; Kofinas, Peter (2016-12-28). "A Review of the Fundamental Principles and Applications of Solution Blow Spinning". ACS Applied Materials & Interfaces. 8 (51): 34951–34963. doi:10.1021/acsami.6b12994. ISSN   1944-8252. PMC   5673076 . PMID   27966857.
  3. Ziabicki, A. Fundamentals of fiber formation, John Wiley and Sons, London, 1976, ISBN   0-471-98220-2.
  4. Nagy,Z.K.; Balogh,A.; et al. (2012). "Solvent-free melt electrospinning for preparation of fast dissolving drug delivery system and comparison with solvent-based electrospun and melt extruded systems". Journal of Pharmaceutical Sciences. 102 (2): 508–517. doi:10.1002/jps.23374. PMID   23161110.
  5. Hutmacher DW & Dalton PD (2011) Melt Electrospinning. Chem Asian J, 6, 44-5.