Aramid

Last updated

Aramid fibers, short for aromatic polyamide, are a class of heat-resistant and strong synthetic fibers. They are used in aerospace and military applications, for ballistic-rated body armor fabric and ballistic composites, in marine cordage, marine hull reinforcement, as an asbestos substitute, [1] and in various lightweight consumer items ranging from phone cases to tennis rackets.

Contents

The chain molecules in the fibers are highly oriented along the fiber axis. As a result, a higher proportion of the chemical bond contributes more to fiber strength than in many other synthetic fibers. Aramids have a very high melting point (>500 °C (932 °F)).

Common aramid brand names include Kevlar, Nomex, and Twaron.

Terminology and chemical structure

Structure of Twaron and Kevlar. The aromatic rings appear as hexagons. The rings are attached alternately to either two NH groups or two CO groups. The attachment points on each ring are diametrically opposite each other, meaning this is classed as a para-aramid. Kevlar chemical structure H-bonds.svg
Structure of Twaron and Kevlar. The aromatic rings appear as hexagons. The rings are attached alternately to either two NH groups or two CO groups. The attachment points on each ring are diametrically opposite each other, meaning this is classed as a para-aramid.

Aramid is a shortened form of aromatic polyamide. The term was introduced in 1972, [2] accepted in 1974 by the Federal Trade Commission of the USA as the name of a generic category of fiber distinct from nylon, [3] [4] and adopted by the International Standards Organisation in 1977.[ citation needed ]

Aromatic in the name refers to the presence of aromatic rings of six carbon atoms. In aramids these rings are connected via amide linkages each comprising a CO group attached to an NH group.

In order to meet the FTC definition of an aramid, [4] at least 85% of these linkages must be attached to two aromatic rings. [5]

Para-aramids and meta-aramids

Aramids are divided into two main types according to where the linkages attach to the rings. Numbering the carbon atoms sequentially around a ring, para-aramids have the linkages attached at positions 1 and 4, while meta-aramids have them at positions 1 and 3. [6] That is, the attachment points are diametrically opposite each other in para-aramids, and two atoms apart in meta-aramids. The illustration thus shows a para-aramid.

History

Aromatic polyamides were first introduced in commercial applications in the early 1960s, with a meta-aramid fiber produced by DuPont as HT-1 and then under the trade name Nomex. [7] This fiber, which handles similarly to normal textile apparel fibers, is characterized by its excellent resistance to heat, as it neither melts nor ignites in normal levels of oxygen. It is used extensively in the production of protective apparel, air filtration, thermal and electrical insulation, as well as a substitute for asbestos.

Meta-aramids are also produced in the Netherlands and Japan by Teijin Aramid under the trade name Teijinconex, [7] and by Toray under the trade name Arawin, in China by Yantai Tayho under the trade name New Star and by SRO Group under the trade name X-Fiper, and a variant of meta-aramid in France by Kermel under the trade name Kermel.

Based on earlier research by Monsanto Company and Bayer, para-aramid fiber with much higher tenacity and elastic modulus was also developed in the 1960s and 1970s by DuPont and AkzoNobel, both profiting from their knowledge of rayon, polyester and nylon processing. In 1973, DuPont was the first company to introduce a para-aramid fiber, calling it Kevlar; this remains one of the best-known[ citation needed ] para-aramids and/or aramids.

In 1978, Akzo introduced a similar fiber with roughly the same chemical structure calling it Twaron. Due to earlier patents on the production process, Akzo and DuPont engaged in a patent dispute in the 1980s. Twaron subsequently came under the ownership of the Teijin Aramid Company. In 2011, Yantai Tayho introduced similar fiber which is called Taparan in China (see Production).

Para-aramids are used in many high-tech applications, such as aerospace and military applications, for "bullet-proof" body armor fabric.

Both meta-aramid and para-aramid fiber can be used to make aramid paper. Aramid paper is used as electrical insulation materials and construction materials to make honeycomb core. Dupont made aramid paper during the 1960s, calling it Nomex paper. Yantai Metastar Special Paper introduced an aramid paper in 2007, which is called metastar paper. Both Dupont and Yantai Metastar make meta-aramid and para-aramid paper.[ citation needed ]

Health

During the 1990s, an in vitro test of aramid fibers showed they exhibited "many of the same effects on epithelial cells as did asbestos, including increased radiolabeled nucleotide incorporation into DNA and induction of ODC (ornithine decarboxylase) enzyme activity", raising the possibility of carcinogenic implications. [8] However, in 2009, it was shown that inhaled aramid fibrils are shortened and quickly cleared from the body and pose little risk. [9] A declaration of interest correction was later provided by the author of the study stating that "This review was commissioned and funded by DuPont and Teijin Aramid, but the author alone was responsible for the content and writing of the paper." [10]

Production

World capacity of para-aramid production was estimated at about 41,000 t (40,000 long tons; 45,000 short tons) per year in 2002 and increases each year by 5–10%. [11] In 2007 this means a total production capacity of around 55,000 tonnes per year.[ citation needed ]

Polymer preparation

Aramids are generally prepared by the reaction between an amine group and a carboxylic acid halide group. Simple AB homopolymers have the connectivity −(NH−C6H4−CO)n−.

Well-known aramid polymers such as Kevlar, Twaron, Nomex, New Star, and Teijinconex) are prepared from diamine and diacid (or equivalent) precursors. These polymers can be further classified according to the linkages on the aromatic subunits. Nomex, Teijinconex, and New Star contain predominantly the meta-linkage. They are called poly-metaphenylene isophthalamides (MPIAs). By contrast, Kevlar and Twaron both feature para-linkages. They are called p-phenylene terephthalamides (PPTAs). PPTA is a product of p-phenylene diamine (PPD) and terephthaloyl dichloride (TDC or TCl).

Production of PPTA relies on a co-solvent with an ionic component (calcium chloride, CaCl2) to occupy the hydrogen bonds of the amide groups, and an organic component (N-methyl pyrrolidone, NMP) to dissolve the aromatic polymer. This process was invented by Leo Vollbracht at Akzo. Apart from the carcinogenic HMPT, still no practical alternative of dissolving the polymer is known. The use of the NMP/CaCl2 system led to an extended patent dispute between Akzo and DuPont.

Spinning

After production of the polymer, the aramid fiber is produced by spinning the dissolved polymer to a solid fiber from a liquid chemical blend. Polymer solvent for spinning PPTA is generally 100% anhydrous sulfuric acid (H2SO4).

Appearances

Other types of aramids

Besides meta-aramids like Nomex, other variations belong to the aramid fiber range. These are mainly of the copolyamide type, best known under the brand name Technora, as developed by Teijin and introduced in 1976. The manufacturing process of Technora reacts PPD and 3,4'-diaminodiphenylether (3,4'-ODA) with terephthaloyl chloride (TCl). [12] This relatively simple process uses only one amide solvent, and therefore spinning can be done directly after the polymer production.

Aramid fiber characteristics

Aramids share a high degree of orientation with other fibers such as ultra-high-molecular-weight polyethylene, a characteristic that dominates their properties.

General

Para-aramids

Uses

See also

Para-aramid

Meta-aramid

Others

Notes and references

  1. Hillermeier, Karlheinz (1984). "Prospects of Aramid as a Substitute for Asbestos". Textile Research Journal. 54 (9): 575–580. doi:10.1177/004051758405400903. S2CID   136433442.
  2. Gooch, J W, ed. (2006). "Aramid". Encyclopedic Dictionary of Polymers. New York: Springer. pp. 64–65. doi:10.1007/978-0-387-30160-0_760. ISBN   978-0-387-31021-3 . Retrieved 16 September 2021.
  3. Wingate, Isabel Barnum (1979). Fairchild's dictionary of textiles. Internet Archive. New York : Fairchild Publications. p. 25. ISBN   978-0-87005-198-2.
  4. 1 2 Commercial Practices, Part 303, §303.7 Generic names and definitions for manufactured fibers.
  5. The full definition of aramid fibre is "a manufactured fiber in which the fiber-forming substance is a long-chain synthetic polyamide in which at least 85% of the amide linkages, ( ) are attached directly to two aromatic rings", with a diagram between the parentheses which shows a vertically oriented CO group attached horizontally to an NH group. There is an incoming bond to the C atom and an outgoing one from the NH group.
  6. Position 1 is simply chosen as the point where one of the chains is attached. We then count around the ring in the shortest direction until we reach the other one.
  7. 1 2 James A. Kent, ed. (2006). Handbook of Industrial Chemistry and Biotechnology . Springer. p.  483. ISBN   978-0-387-27842-1.
  8. Marsh, J. P.; Mossman, B. T.; Driscoll, K. E.; Schins, R. F.; Borm, P. J. A. (1 January 1994). "Effects of Aramid, a high Strength Synthetic Fiber, on Respiratory Cells in Vitro". Drug and Chemical Toxicology. 17 (2): 75–92. doi:10.3109/01480549409014303. PMID   8062644.
  9. Donaldson, K. (1 July 2009). "The inhalation toxicology of p-aramid fibrils". Critical Reviews in Toxicology. 39 (6): 487–500. CiteSeerX   10.1.1.468.7557 . doi:10.1080/10408440902911861. PMID   19545198. S2CID   6508943.
  10. Donaldson, Ken (22 July 2009). "Corrigendum: The inhalation toxicology of - aramid fibrils". Critical Reviews in Toxicology. 39 (6): 540. doi: 10.1080/10408440903083066 . S2CID   218987849.
  11. Committee on High-Performance Structural Fibers for Advanced Polymer Matrix Composites, National Research Council (2005). High-Performance Structural Fibers for Advanced Polymer Matrix Composites. The National Academies Press. p. 34. ISBN   978-0-309-09614-0.
  12. Ozawa S (1987). "A New Approach to High Modulus, High Tenacity Fibers". Polymer Journal. 19: 199. doi: 10.1295/polymj.19.119 .
  13. 1 2 Kadolph, Sara J. Anna L. Langford (2002). "Textiles". Pearson Education, Inc. Upper Saddle River, NJ.
  14. Reisch, Marc S (2005). "High-performance fiber makers respond to demand from military and security users". Chemical and Engineering News. 83 (31): 18–22. doi:10.1021/cen-v083n050.p018.
  15. "Aramid Cables". FibreMax. Archived from the original on 2021-12-01.

Further reading

Related Research Articles

<span class="mw-page-title-main">Kevlar</span> Heat-resistant and strong aromatic polyamide fiber

Kevlar (para-aramid) is a strong, heat-resistant synthetic fiber, related to other aramids such as Nomex and Technora. Developed by Stephanie Kwolek at DuPont in 1965, the high-strength material was first used commercially in the early 1970s as a replacement for steel in racing tires. It is typically spun into ropes or fabric sheets that can be used as such, or as an ingredient in composite material components.

<span class="mw-page-title-main">Nylon</span> Early synthetic polymer developed as a textile fiber

Nylon is a family of synthetic polymers with amide backbones, usually linking aliphatic or semi-aromatic groups.

<span class="mw-page-title-main">Fiber</span> Natural or synthetic substance made of long, thin filaments

Fiber or fibre is a natural or artificial substance that is significantly longer than it is wide. Fibers are often used in the manufacture of other materials. The strongest engineering materials often incorporate fibers, for example carbon fiber and ultra-high-molecular-weight polyethylene.

Synthetic fibers or synthetic fibres are fibers made by humans through chemical synthesis, as opposed to natural fibers that are directly derived from living organisms, such as plants or fur from animals. They are the result of extensive research by scientists to replicate naturally occurring animal and plant fibers. In general, synthetic fibers are created by extruding fiber-forming materials through spinnerets, forming a fiber. These are called synthetic or artificial fibers. The word polymer comes from a Greek prefix "poly" which means "many" and suffix "mer" which means "single units"..

A polyamide is a polymer with repeating units linked by amide bonds.

Twaron is a para-aramid. It is a heat-resistant and strong synthetic fibre developed in the early 1970s by the Dutch company Akzo Nobel's division Enka BV, later Akzo Industrial Fibers. The research name of the para-aramid fibre was originally Fiber X, but it was soon called Arenka. Although the Dutch para-aramid fiber was developed only a little later than DuPont's Kevlar, the introduction of Twaron as a commercial product came much later than Kevlar due to financial problems at the Akzo company in the 1970s.

<span class="mw-page-title-main">Stephanie Kwolek</span> American chemist who invented Kevlar

Stephanie Louise Kwolek was a Polish-American chemist who is known for inventing Kevlar. Her career at the DuPont company spanned more than 40 years. She discovered the first of a family of synthetic fibers of exceptional strength and stiffness: poly-paraphenylene terephthalamide.

Fibre-reinforced plastic is a composite material made of a polymer matrix reinforced with fibres. The fibres are usually glass, carbon, aramid, or basalt. Rarely, other fibres such as paper, wood, boron, or asbestos have been used. The polymer is usually an epoxy, vinyl ester, or polyester thermosetting plastic, though phenol formaldehyde resins are still in use.

<span class="mw-page-title-main">Nomex</span> Flame-resistant meta-aramid material

Nomex is a flame-resistant meta-aramid material developed in the early 1960s by DuPont and first marketed in 1967.

Polybenzimidazole (PBI, short for poly[2,2’-(m-phenylen)-5,5’-bisbenzimidazole]) fiber is a synthetic fiber with a very high decomposition temperature. It does not exhibit a melting point, it has exceptional thermal and chemical stability, and it does not readily ignite. It was first discovered by American polymer chemist Carl Shipp Marvel in the pursuit of new materials with superior stability, retention of stiffness, and toughness at elevated temperature. Due to its high stability, polybenzimidazole is used to fabricate high-performance protective apparel such as firefighter's gear, astronaut space suits, high temperature protective gloves, welders’ apparel and aircraft wall fabrics. Polybenzimidazole has been applied as a membrane in fuel cells.

Teijin Limited is a Japanese chemical, pharmaceutical and information technology company. Its main fields of operation are high-performance fibers such as aramid, carbon fibers & composites, healthcare, films, resin & plastic processing, polyester fibers, products converting and IT products.

<span class="mw-page-title-main">Sailcloth</span> Strong fabric of the type used to make ships sails

Sailcloth is cloth used to make sails. It can be made of a variety of materials, including natural fibers such as flax, hemp, or cotton in various forms of sail canvas, and synthetic fibers such as nylon, polyester, aramids, and carbon fibers in various woven, spun, and molded textiles.

<span class="mw-page-title-main">DuPont Experimental Station</span> Research and development facility of DuPont

The DuPont Experimental Station is the largest research and development facility of DuPont, located on the banks of the Brandywine Creek in Wilmington, Delaware

Reinforced thermoplastic pipe (RTP) is a type of pipe reinforced using a high strength synthetic fibre such as glass, aramid or carbon. It was initially developed in the early 1990s by Wavin Repox, Akzo Nobel and by Tubes d'Aquitaine from France, who developed the first pipes reinforced with synthetic fibre to replace medium pressure steel pipes in response to growing demand for non-corrosive conduits for application in the onshore oil and gas industry, particularly in the Middle East. Typically, the materials used in the construction of the pipe might be Polyethylene (PE), Polyamide-11 or PVDF and may be reinforced with Aramid or Polyester fibre although other combinations are used. More recently the technology of producing such pipe, including the marketing, rests with a few key companies, where it is available in coils up to 400 m (1,312 ft) length. These pipes are available in pressure ratings from 30 to 90 bar. Over the last few years this type of pipe has been acknowledged as a standard alternative solution to steel for oilfield flowline applications by certain oil companies and operators. An advantage of this pipe is also its very fast installation time compared to steel pipe when considering the welding time as average speeds up to 1,000 m (3,281 ft)/day have been reached installing RTP in ground surface.

Technora is an aramid that is useful for a variety of applications that require high strength or chemical resistance. It is a brand name of the company Teijin Aramid.

Teijin Aramid, formerly known as Teijin Twaron, is a company in The Netherlands that produces various high-strength fibers for industrial purposes, most notably their para-aramid, Twaron. Twaron finds applications in numerous markets, such as automotive, aerospace, civil engineering, construction, leisure goods, protective clothing, optical fiber cables, friction and sealing materials and more. The company has been part of the Japanese Teijin Group since 2000, prior to this they were a division of Akzo Nobel, division Industrial Fibers. Next to Twaron, the company markets Technora, Endumax and Teijinconex as well.

<span class="mw-page-title-main">M5 fiber</span>

M5 fiber is a high-strength synthetic fiber first developed by the Dutch chemical firm AkzoNobel. It is produced in the United States by the Magellan Systems International, which became a division of DuPont.

<span class="mw-page-title-main">Setralit</span>

Setralit is a technical natural fiber based on plant fibers whose property profile has been modified selectively in order to meet different industrial requirements. It was first manufactured in 1989 by Jean-Léon Spehner, an Alsatian engineer, and further developed by the German company ECCO Gleittechnik GmbH. The name “Setralit“ is derived from the French company Setral S.à.r.l. which is a subsidiary company of ECCO, where Spehner was employed at that time. Setralit was officially described first in 1990.

Armor has been used in the military for a long period of time during the course of history, but is becoming more frequently seen in the public sector as time passes. There are many different forms and ways that armor is being commercially used throughout the world today. The most popular and well-known uses are body and vehicle armor. There are other commercial uses including aircraft armor and armored glass.