Twaron

Last updated

Twaron (a brand name of Teijin Aramid) is a para-aramid, high-performance yarn. [1] It is a heat-resistant fibre, helps in ballistic protection and cut protection. [2] Twaron was developed in the early 1970s by the Dutch company Akzo Nobel's division Enka BV, later Akzo Industrial Fibers. The research name of the para-aramid fibre was originally Fiber X, but it was soon called Arenka. Although the Dutch para-aramid fiber was developed only a little later than DuPont's Kevlar, the introduction of Twaron as a commercial product came much later than Kevlar due to financial problems at the Akzo company in the 1970s. As of 2000, Twaron had become a global material and had been integrated into the global markets. [3] Twaron has been around for over 30 years. [4]

Contents

History

This is a chronology of the development of Twaron: [5]

Production

Polymer preparation

Twaron is a p-phenylene terephthalamide (PpPTA), the simplest form of the AABB para polyaramide. PpPTA is a product of p-phenylene diamine (PPD) and terephthaloyl dichloride (TDC). To dissolve the aromatic polymer Twaron used a co-solvent of N-methyl pyrrolidone (NMP) and an ionic component (calcium chloride CaCl2) to occupy the hydrogen bonds of the amide groups. The invention of this specific process was done in 1974 at AKZO Research Laboratory in Arnhem by a team consisting of Leo Vollbracht, Teun Veerman (assistant of Leo Vollbracht) and Wim Engelhard (trainee, who actually discovered NMP as the appropriate solvent to keep the growing polymer as long as possible in solution; he also discovered that high speed mixing of PPD and TDC was necessary to obtain a sufficiently long polymer chains). The patent of the newly discovered process route led to a patent war between AKZO (Fibre X) and DuPont (Fibre B) as Dupont initially used the carcinogenic HMPT (hexamethylphosphoramide). Despite heavy research DuPont now also applies the AKZO patent for their Kevlar process and use the less hazardous NMP.

Spinning

After the production of the Twaron polymer in Delfzijl, the polymer is brought to Emmen, where fibres are produced by spinning the dissolved polymer into a solid fibre from a liquid chemical blend. Polymer solvent for spinning PPTA is generally 100% anhydrous (water free) sulfuric acid (H2SO4). The polymer is dissolved by mixing frozen sulfuric acid in powder form with the polymer in powder form and gently heating the mixture. This process, which differs from the more difficult DuPont process, was invented by Henri Lammers and patented by AKZO.

Use

Rifle protection police shield used by the National Police of Colombia. Stops 7.62 mm and 5.56 mm caliber rounds. Made from light ceramics and Twaron. Rifle Protected Entry Shield level III used by Police and Swat.jpg
Rifle protection police shield used by the National Police of Colombia. Stops 7.62 mm and 5.56 mm caliber rounds. Made from light ceramics and Twaron.

Twaron is a para-aramid and has automotive, construction, sports, aerospace, and military applications, e.g., in modern body armor, fabric, and as an asbestos substitute.

Protective gear (heat resistant / ballistics)
flame-resistant clothing, protective clothing and helmets, cut-fast or heat-hardy gloves, sporting goods, textiles, ballistic vests
Composites
composite materials, technical paper, asbestos replacement, hot air filtration, sail cloth, speaker woofers, boat hull material, fiber reinforced concrete, drumheads
Automotive
brake pads, turbo hoses, V-belts and Timing belts, tires that incorporate Sulfron (sulfur modified Twaron), mechanical rubber goods reinforcement
Linear tension
optical fiber cables (OFC), ropes, wire ropes, electrical cables, [7] umbilical cables, electrical mechanical cable (EMC), reinforced thermoplastic pipes

See also

Related Research Articles

<span class="mw-page-title-main">Kevlar</span> Heat-resistant and strong aromatic polyamide fiber

Kevlar (para-aramid) is a strong, heat-resistant synthetic fiber, related to other aramids such as Nomex and Technora. Developed by Stephanie Kwolek at DuPont in 1965, the high-strength material was first used commercially in the early 1970s as a replacement for steel in racing tires. It is typically spun into ropes or fabric sheets that can be used as such, or as an ingredient in composite material components.

<span class="mw-page-title-main">Rayon</span> Cellulose-based semi-synthetic fiber

Rayon, also called viscose and commercialised in some countries as sabra silk or cactus silk, is a semi-synthetic fiber, made from natural sources of regenerated cellulose, such as wood and related agricultural products. It has the same molecular structure as cellulose. Many types and grades of viscose fibers and films exist. Some imitate the feel and texture of natural fibers such as silk, wool, cotton, and linen. The types that resemble silk are often called artificial silk. It can be woven or knit to make textiles for clothing and other purposes.

Synthetic fibers or synthetic fibres are fibers made by humans through chemical synthesis, as opposed to natural fibers that are directly derived from living organisms, such as plants or fur from animals. They are the result of extensive research by scientists to replicate naturally occurring animal and plant fibers. In general, synthetic fibers are created by extruding fiber-forming materials through spinnerets, forming a fiber. These are called synthetic or artificial fibers. The word polymer comes from a Greek prefix "poly" which means "many" and suffix "mer" which means "single units"..

<span class="mw-page-title-main">Aramid</span> Class of synthetic fiber

Aramid fibers, short for aromatic polyamide, are a class of heat-resistant and strong synthetic fibers. They are used in aerospace and military applications, for ballistic-rated body armor fabric and ballistic composites, in marine cordage, marine hull reinforcement, as an asbestos substitute, and in various lightweight consumer items ranging from phone cases to tennis rackets.

<span class="mw-page-title-main">Vectran</span> Aromatic polyester fiber

Vectran is a manufactured fiber, spun from a liquid-crystal polymer (LCP) created by Celanese Corporation and now manufactured by Kuraray. Chemically it is an aromatic polyester produced by the polycondensation of 4-hydroxybenzoic acid and 6-hydroxynaphthalene-2-carboxylic acid.

<span class="mw-page-title-main">Polyacrylonitrile</span> Chemical compound

Polyacrylonitrile (PAN) is a synthetic, semicrystalline organic polymer resin, with the linear formula (CH2CHCN)n. Almost all PAN resins are copolymers with acrylonitrile as the main monomer. PAN is used to produce large variety of products including ultra filtration membranes, hollow fibers for reverse osmosis, fibers for textiles, and oxidized PAN fibers. PAN fibers are the chemical precursor of very high-quality carbon fiber. PAN is first thermally oxidized in air at 230 °C to form an oxidized PAN fiber and then carbonized above 1000 °C in inert atmosphere to make carbon fibers found in a variety of both high-tech and common daily applications such as civil and military aircraft primary and secondary structures, missiles, solid propellant rocket motors, pressure vessels, fishing rods, tennis rackets and bicycle frames. It is a component repeat unit in several important copolymers, such as styrene-acrylonitrile (SAN) and acrylonitrile butadiene styrene (ABS) plastic.

<span class="mw-page-title-main">AkzoNobel</span> Dutch multinational company which creates paints and performance coating

Akzo Nobel N.V., stylized as AkzoNobel, is a Dutch multinational company which creates paints and performance coatings for both industry and consumers worldwide. Headquartered in Amsterdam, the company has activities in more than 150 countries. AkzoNobel is the world's third-largest paint manufacturer by revenue after Sherwin-Williams and PPG Industries.

<span class="mw-page-title-main">Lyocell</span> Regenerated cellulose fiber made from dissolving pulp

Lyocell is a semi-synthetic fiber used to make textiles for clothing and other purposes. It is a form of regenerated cellulose made by dissolving pulp and dry jet-wet spinning. Unlike rayon made by the more common viscose processes, Lyocell production does not use carbon disulfide, which is toxic to workers and the environment. Lyocell was originally trademarked as Tencel in 1982.

<span class="mw-page-title-main">Stephanie Kwolek</span> American chemist who invented Kevlar (1923–2014)

Stephanie Louise Kwolek was an American chemist best known for inventing Kevlar. Her career at the DuPont company spanned more than 40 years. She discovered the first of a family of synthetic fibers of exceptional strength and stiffness: poly-paraphenylene terephthalamide.

<span class="mw-page-title-main">Polyphenylene sulfide</span> Organic polymer with industrial applications

Polyphenylene sulfide (PPS) is an organic polymer consisting of aromatic rings linked by sulfides. Synthetic fiber and textiles derived from this polymer resist chemical and thermal attack. PPS is used in filter fabric for coal boilers, papermaking felts, electrical insulation, film capacitors, specialty membranes, gaskets, and packings. PPS is the precursor to a conductive polymer of the semi-flexible rod polymer family. The PPS, which is otherwise insulating, can be converted to the semiconducting form by oxidation or use of dopants.

Fibre-reinforced plastic is a composite material made of a polymer matrix reinforced with fibres. The fibres are usually glass, carbon, aramid, or basalt. Rarely, other fibres such as paper, wood, boron, or asbestos have been used. The polymer is usually an epoxy, vinyl ester, or polyester thermosetting plastic, though phenol formaldehyde resins are still in use.

<span class="mw-page-title-main">Nomex</span> Flame-resistant meta-aramid material

Nomex is a flame-resistant meta-aramid material developed in the early 1960s by DuPont and first marketed in 1967.

Ultra-high-molecular-weight polyethylene is a subset of the thermoplastic polyethylene. Also known as high-modulus polyethylene (HMPE), it has extremely long chains, with a molecular mass usually between 3.5 and 7.5 million amu. The longer chain serves to transfer load more effectively to the polymer backbone by strengthening intermolecular interactions. This results in a very tough material, with the highest impact strength of any thermoplastic presently made.

<span class="mw-page-title-main">Sailcloth</span> Strong fabric of the type used to make ships sails

Sailcloth is cloth used to make sails. It can be made of a variety of materials, including natural fibers such as flax, hemp, or cotton in various forms of sail canvas, and synthetic fibers such as nylon, polyester, aramids, and carbon fibers in various woven, spun, and molded textiles.

Technora is an aramid that is useful for a variety of applications that require high strength or chemical resistance. It is a brand name of the company Teijin Aramid.

Teijin Aramid, formerly known as Teijin Twaron, is a company in The Netherlands that produces various high-strength fibers for industrial purposes, most notably their para-aramid, Twaron. Twaron finds applications in numerous markets, such as automotive, aerospace, civil engineering, construction, leisure goods, protective clothing, optical fiber cables, friction and sealing materials and more. The company has been part of the Japanese Teijin Group since 2000, prior to this they were a division of Akzo Nobel, division Industrial Fibers. Next to Twaron, the company markets Technora, Teijinconex as well.

Spinning is a manufacturing process for creating polymer fibers. It is a specialized form of extrusion that uses a spinneret to form multiple continuous filaments.

<span class="mw-page-title-main">M5 fiber</span>

M5 fiber is a high-strength synthetic fiber first developed by the Dutch chemical firm AkzoNobel. It is produced in the United States by the Magellan Systems International, which became a division of DuPont.

Bicomponent fiber is made of two materials, utilizing desired properties of each material.

References

  1. "Twaron®". FibrXL. Retrieved 2024-05-25.
  2. "Twaron®". FibrXL. Retrieved 2024-05-25.
  3. "Twaron®". FibrXL. Retrieved 2024-05-25.
  4. "Twaron®". FibrXL. Retrieved 2024-05-25.
  5. Teijin Aramid (2012). "Teijin Aramid history". Teijin Aramid Website.
  6. International Fiber Journal (2007). "Teijin Launches Fourth Production Expansion in Six Years". International Fiber Journal (February): 20. Archived from the original on 2007-08-19.
  7. Cranes Today: Rope Trick