Basalt fiber

Last updated

Basalt fibers are produced from basalt rocks by melting them and converting the melt into fibers. Basalts are rocks of igneous origin. The main energy consumption for the preparation of basalt raw materials to produce of fibers is made in natural conditions. Basalt fibers are classified into 3 types:

Contents

Manufacturing process

The technology of production of basalt continuous fiber (BCF) is a one-stage process: melting, homogenization of basalt and extraction of fibers. Basalt is heated only once. Further processing of BCF into materials is carried out using "cold technologies" with low energy costs.

Basalt fiber is made from a single material, crushed basalt, from a carefully chosen quarry source. [1] Basalt of high acidity (over 46% silica content [2] ) and low iron content is considered desirable for fiber production. [3] Unlike with other composites, such as glass fiber, essentially no materials are added during its production. The basalt is simply washed and then melted. [4]

The manufacture of basalt fiber requires the melting of the crushed and washed basalt rock at about 1,500 °C (2,730 °F). The molten rock is then extruded through small nozzles to produce continuous filaments of basalt fiber.

The basalt fibers typically have a filament diameter of between 10 and 20 μm which is far enough above the respiratory limit of 5 μm to make basalt fiber a suitable replacement for asbestos. [5] They also have a high elastic modulus, resulting in high specific strength—three times that of steel. [6] [7] Thin fiber is usually used for textile applications mainly for production of woven fabric. Thicker fiber is used in filament winding, for example, for production of compressed natural gas (CNG) cylinders or pipes. The thickest fiber is used for pultrusion, geogrid, unidirectional fabric, multiaxial fabric production and in form of chopped strand for concrete reinforcement. One of the most prospective applications for continuous basalt fiber and the most modern trend at the moment is production of basalt rebar that more and more substitutes traditional steel rebar on construction market. [8]

Properties

The table refers to the continuous basalt fiber specific producer. Data from all the manufacturers are different, the difference is sometimes very large values.

PropertyValue [9]
Tensile strength2.8–3.1 GPa (410–450 ksi)
Elastic modulus85–87 GPa (12,300–12,600 ksi)
Elongation at break3.15%
Density2.67 g/cm3 (0.096 lb/cu in)

Comparison:

Material Density
(g/cm3)
Tensile strength
(GPa)
Specific strength
Elastic modulus
(GPa)
Specific
modulus
Steel rebar 7.850.50.063721026.8
A-glass 2.462.10.8546928
C-glass 2.462.51.026928
E-glass 2.602.50.9627629.2
S-2 glass 2.494.831.949739
Silicon 2.160.206-0.4120.0954-0.191
Quartz 2.20.34380.156
Carbon fiber (large)1.743.622.08228131
Carbon fiber (medium)1.805.102.83241134
Carbon fiber (small)1.806.213.45297165
Kevlar K-291.443.622.5141.428.7
Kevlar K-1491.473.482.37
Polypropylene 0.910.27-0.650.297-0.7143841.8
Polyacrylonitrile 1.180.50-0.910.424-0.7717563.6
Basalt fiber2.652.9-3.11.09-1.1785-8732.1-32.8

[ citation needed ]

Material type [10] Elastic modulus (E)Yield stress (fy)Tensile strength (fu)
13-mm-diameter steel bars200 GPa (29,000 ksi)375 MPa (54.4 ksi)560 MPa (81 ksi)
10-mm-diameter steel bars200 GPa (29,000 ksi)360 MPa (52 ksi)550 MPa (80 ksi)
6-mm-diameter steel bars200 GPa (29,000 ksi)400 MPa (58 ksi)625 MPa (90.6 ksi)
10-mm-diameter BFRP bars48.1 GPa (6,980 ksi)-1,113 MPa (161.4 ksi)
6-mm-diameter BFRP bars47.5 GPa (6,890 ksi)-1,345 MPa (195.1 ksi)
BFRP sheet91 GPa (13,200 ksi)-2,100 MPa (300 ksi)

History

The first attempts to produce basalt fiber were made in the United States in 1923 by Paul Dhe who was granted U.S. patent 1,462,446 . These were further developed after World War II by researchers in the US, Europe and the Soviet Union especially for military and aerospace applications. Since declassification in 1995 basalt fibers have been used in a wider range of civilian applications. [11]

Schools

  1. RWTH Aachen University. Every two year RWTH Aachen University's Institut für Textiltechnik hosts the International Glass Fibers Symposium where basalt fiber is devoted a separate section. The university conducts regular research to study and improve basalt fiber properties. Textile concrete is also more corrosion-resistant and more malleable than conventional concrete. Replacement of carbon fibers with basalt fibers can significantly enhance the application fields of the innovative composite material that is textile concrete, says Andreas Koch.
  2. The Institute for Lightweight Design Materials Science at the University of Hannover
  3. The German Plastics Institute (DKI) in Darmstadt [12]
  4. The Technical University of Dresden had contributed in the studying of basalt fibers. Textile reinforcements in concrete construction - basic research and applications. The Peter Offermann covers the range from the beginning of fundamental research work at the TU Dresden in the early 90s to the present. The idea that textile lattice structures made of high-performance threads for constructional reinforcement could open up completely new possibilities in construction was the starting point for today's large research network. Textile reinforcements in concrete construction - basic research and applications. As a novelty, parallel applications to the research with the required approvals in individual cases, such as the world's first textile reinforced concrete bridges and the upgrading of shell structures with the thinnest layers of textile concrete, are reported.
  5. University of Applied Sciences Regensburg, Department of Mechanical Engineering. Mechanical characterization of basalt fibre reinforced plastic with different fabric reinforcements – Tensile tests and FE-calculations with representative volume elements (RVEs). Marco Romano, Ingo Ehrlich. [13]

Uses

Design codes

Russia

Since October 18, 2017, JV 297.1325800.2017 "Fibreconcrete constructions with nonmetallic fiber has been put into operation. Design rules, "which eliminated the legal vacuum in the design of basalt reinforced fiber reinforced concrete. According to paragraph 1.1. the standard extends to all types of non-metallic fibers (polymers, polypropylene, glass, basalt and carbon). When comparing different fibers, it can be noted that polymer fibers are inferior to mineral strengths, but their use makes it possible to improve the characteristics of building composites.

See also

Related Research Articles

<span class="mw-page-title-main">Reinforced concrete</span> Concrete with rebar

Reinforced concrete, also called ferroconcrete, is a composite material in which concrete's relatively low tensile strength and ductility are compensated for by the inclusion of reinforcement having higher tensile strength or ductility. The reinforcement is usually, though not necessarily, steel reinforcing bars and is usually embedded passively in the concrete before the concrete sets. However, post-tensioning is also employed as a technique to reinforce the concrete. In terms of volume used annually, it is one of the most common engineering materials. In corrosion engineering terms, when designed correctly, the alkalinity of the concrete protects the steel rebar from corrosion.

<span class="mw-page-title-main">Fiber</span> Natural or synthetic substance that is significantly longer than it is wide

Fiber or fibre is a natural or artificial substance that is significantly longer than it is wide. Fibers are often used in the manufacture of other materials. The strongest engineering materials often incorporate fibers, for example carbon fiber and ultra-high-molecular-weight polyethylene.

<span class="mw-page-title-main">Glass fiber</span> Material consisting of numerous extremely fine fibers of glass

Glass fiber is a material consisting of numerous extremely fine fibers of glass.

<span class="mw-page-title-main">Composite material</span> Material made from a combination of two or more unlike substances

A composite material is a material which is produced from two or more constituent materials. These constituent materials have notably dissimilar chemical or physical properties and are merged to create a material with properties unlike the individual elements. Within the finished structure, the individual elements remain separate and distinct, distinguishing composites from mixtures and solid solutions. Composite materials with more than one distinct layer are called composite laminates.

<span class="mw-page-title-main">Carbon fibers</span> Material fibers about 5–10 μm in diameter composed of carbon

Carbon fibers or carbon fibres are fibers about 5 to 10 micrometers (0.00020–0.00039 in) in diameter and composed mostly of carbon atoms. Carbon fibers have several advantages: high stiffness, high tensile strength, high strength to weight ratio, high chemical resistance, high-temperature tolerance, and low thermal expansion. These properties have made carbon fiber very popular in aerospace, civil engineering, military, motorsports, and other competition sports. However, they are relatively expensive compared to similar fibers, such as glass fiber, basalt fibers, or plastic fibers.

Fiberglass or fibreglass is a common type of fiber-reinforced plastic using glass fiber. The fibers may be randomly arranged, flattened into a sheet called a chopped strand mat, or woven into glass cloth. The plastic matrix may be a thermoset polymer matrix—most often based on thermosetting polymers such as epoxy, polyester resin, or vinyl ester resin—or a thermoplastic.

<span class="mw-page-title-main">Rebar</span> Steel reinforcement

Rebar, known when massed as reinforcing steel or steel reinforcement, is a tension device added to concrete to form reinforced concrete and reinforced masonry structures to strengthen and aid the concrete under tension. Concrete is strong under compression, but has low tensile strength. Rebar usually consists of steel bars which significantly increase the tensile strength of the structure. Rebar surfaces feature a continuous series of ribs, lugs or indentations to promote a better bond with the concrete and reduce the risk of slippage.

Fibre-reinforced plastic is a composite material made of a polymer matrix reinforced with fibres. The fibres are usually glass, carbon, aramid, or basalt. Rarely, other fibres such as paper, wood, boron, or asbestos have been used. The polymer is usually an epoxy, vinyl ester, or polyester thermosetting plastic, though phenol formaldehyde resins are still in use.

<span class="mw-page-title-main">Metallic fiber</span> Thread wholly or partly made from metal

Metallic fibers are manufactured fibers composed of metal, metallic alloys, plastic-coated metal, metal-coated plastic, or a core completely covered by metal.

Glass fiber reinforced concrete (GFRC) is a type of fiber-reinforced concrete. The product is also known as glassfibre reinforced concrete or GRC in British English. Glass fiber concretes are mainly used in exterior building façade panels and as architectural precast concrete. Somewhat similar materials are fiber cement siding and cement boards.

Fiber-reinforced concrete or fibre-reinforced concrete (FRC) is concrete containing fibrous material which increases its structural integrity. It contains short discrete fibers that are uniformly distributed and randomly oriented. Fibers include steel fibers, glass fibers, synthetic fibers and natural fibers – each of which lend varying properties to the concrete. In addition, the character of fiber-reinforced concrete changes with varying concretes, fiber materials, geometries, distribution, orientation, and densities.

<span class="mw-page-title-main">Technical textile</span> Textile product valued for its functional characteristics

"Technical textile" refers to a category of textiles specifically engineered and manufactured to serve functional purposes beyond traditional apparel and home furnishing applications. These textiles are designed with specific performance characteristics and properties, making them suitable for various industrial, medical, automotive, aerospace, and other technical applications. Unlike conventional textiles used for clothing or decoration, technical textiles are optimized to offer qualities such as strength, durability, flame resistance, chemical resistance, moisture management, and other specialized functionalities to meet the specific needs of diverse industries and sectors.

<span class="mw-page-title-main">Textile-reinforced concrete</span> Type of reinforced concrete

Textile-reinforced concrete is a type of reinforced concrete in which the usual steel reinforcing bars are replaced by textile materials. Instead of using a metal cage inside the concrete, this technique uses a fabric cage inside the same.

Carbon fiber-reinforced polymers, carbon-fibre-reinforced polymers, carbon-fiber-reinforced plastics, carbon-fiber reinforced-thermoplastic, also known as carbon fiber, carbon composite, or just carbon, are extremely strong and light fiber-reinforced plastics that contain carbon fibers. CFRPs can be expensive to produce, but are commonly used wherever high strength-to-weight ratio and stiffness (rigidity) are required, such as aerospace, superstructures of ships, automotive, civil engineering, sports equipment, and an increasing number of consumer and technical applications.

Three-dimensional composites use fiber preforms constructed from yarns or tows arranged into complex three-dimensional structures. These can be created from a 3D weaving process, a 3D knitting process, a 3D braiding process, or a 3D lay of short fibers. A resin is applied to the 3D preform to create the composite material. Three-dimensional composites are used in highly engineered and highly technical applications in order to achieve complex mechanical properties. Three-dimensional composites are engineered to react to stresses and strains in ways that are not possible with traditional composite materials composed of single direction tows, or 2D woven composites, sandwich composites or stacked laminate materials.

<span class="mw-page-title-main">Tailored fiber placement</span>

Tailored fiber placement (TFP) is a textile manufacturing technique based on the principle of sewing for a continuous placement of fibrous material for composite components. The fibrous material is fixed with an upper and lower stitching thread on a base material. Compared to other textile manufacturing processes fiber material can be placed near net-shape in curvilinear patterns upon a base material in order to create stress adapted composite parts.

Textile-reinforced mortars (TRM) (also known as fabric-reinforced cementitious mortars are composite materials used in structural strengthening of existing buildings, most notably in seismic retrofitting. The material consists of bidirectional orthogonal textiles made from knitted, woven or simply stitched rovings of high-strength fibres, embedded in inorganic matrices. The textiles can also be made from natural fibres, e.g. hemp or flax.

<span class="mw-page-title-main">Reinforcement (composite)</span> Constituent of a composite material which increases tensile strength

In materials science, reinforcement is a constituent of a composite material which increases the composite's stiffness and tensile strength.

The reinforcement of 3D printed concrete is a mechanism where the ductility and tensile strength of printed concrete are improved using various reinforcing techniques, including reinforcing bars, meshes, fibers, or cables. The reinforcement of 3D printed concrete is important for the large-scale use of the new technology, like in the case of ordinary concrete. With a multitude of additive manufacturing application in the concrete construction industry—specifically the use of additively constructed concrete in the manufacture of structural concrete elements—the reinforcement and anchorage technologies vary significantly. Even for non-structural elements, the use of non-structural reinforcement such as fiber reinforcement is not uncommon. The lack of formwork in most 3D printed concrete makes the installation of reinforcement complicated. Early phases of research in concrete 3D printing primarily focused on developing the material technologies of the cementitious/concrete mixes. These causes combined with the non-existence of codal provisions on reinforcement and anchorage for printed elements speak for the limited awareness and the usage of the various reinforcement techniques in additive manufacturing. The material extrusion-based printing of concrete is currently favorable both in terms of availability of technology and of the cost-effectiveness. Therefore, most of the reinforcement techniques developed or currently under development are suitable to the extrusion-based 3D printing technology.

<span class="mw-page-title-main">3D textiles</span> Three-dimensional fibers, yarns and fabrics

3D textiles are three-dimensional structures made with different manufacturing methods such as weaving, knitting, braiding, or nonwoven, or made with alternative technologies. 3D textiles are produced with three planar geometry, opposed to 2D textiles that are made on two planes. The weave in 2D textiles is perpendicular. The yarn is fed along two axis: length (x-axis) and width (y-axis), while 3D textiles also have a perpendicular weave, but they have an extra yarn with an angular feeding (z-axis) which creates thickness. 3D weaves are orthogonal weave structures, multilayer structures, and angle interlocks. 3D textiles have more manufacturing opportunities, various properties, and a broader scope of applications. These textiles have a wide range of applications, but they are most commonly used where performance is the primary criterion, such as technical textiles. Composite materials, manufacturing is one of the significant areas of using 3D textiles.

References

  1. "Research surveys for basalt rock quarries | Basalt Projects Inc. | Engineering continuous basalt fiber and CBF-based composites". Basalt Projects Inc. Retrieved 2017-12-10.
  2. De Fazio, Piero (2011). "Basalt fibra: from earth an ancient material for innovative and modern application" (PDF). Energia, Ambiente e Innovazione. 3: 89–96. Archived from the original (PDF) on 2021-09-18. Retrieved 2021-09-08.
  3. Schut, Jan H. (August 2008). "Composites: Higher Properties, Lower Cost". www.ptonline.com. Retrieved 2017-12-10.
  4. Ross, Anne (August 2006). "Basalt Fibers: Alternative To Glass?". www.compositesworld.com. Retrieved 2017-12-10.
  5. "Basalt Fibers from continuous-filament basalt rock". basalt-fiber.com.
  6. Soares, B.; Preto, R.; Sousa, L.; Reis, L. (2016). "Mechanical behavior of basalt fibers in a basalt-UP composite". Procedia Structural Integrity. 1: 82–89. doi: 10.1016/j.prostr.2016.02.012 .
  7. Choi, Jeong-Il; Lee, Bang (30 September 2015). "Bonding Properties of Basalt Fiber and Strength Reduction According to Fiber Orientation". Materials. 8 (10): 6719–6727. Bibcode:2015Mate....8.6719C. doi: 10.3390/ma8105335 . PMC   5455386 . PMID   28793595.
  8. "Some aspects of the technological process of continuous basalt fiber". novitsky1.narod.ru. Retrieved 2018-06-21.
  9. "Basalt Continuous Fiber". Archived from the original on 2009-11-03. Retrieved 2009-12-29.
  10. Ibrahim, Arafa M.A; Fahmy, Mohamed F.M; Wu, Zhishen (2016). "3D finite element modeling of bond-controlled behavior of steel and basalt FRP-reinforced concrete square bridge columns under lateral loading". Composite Structures. 143: 33–52. doi:10.1016/j.compstruct.2016.01.014.
  11. "Basalt fiber". basfiber.com (in Russian, English, German, Korean, and Japanese). Retrieved 2018-06-21.
  12. (the main work is the book "Konstruieren mit Faser-Kunststoff-Verbunden" of Helmut Schürmann)
  13. B. Jungbauer, M. Romano, I. Ehrlich, Bachelorthesis, University of Applied Sciences Regensburg, Laboratory of Composite Technology, Regensburg, (2012).
  14. Albarrie - BASALT FIBER
  15. Neuvokas
  16. Henderson, Tom (December 10, 2016). "Neuvokas raises the bar on manufacture of rebar". Crain's Detroit Business. Retrieved 17 December 2018.

Bibliography

• Osnos S, Osnos M, «BCF: developing industrial production for reinforcement materials and composites». JEC Composites magazine / N° 139 March - April 2021, p.19 – 24.

• Osnos S., Rozhkov I. «Application of basalt rock-based materials in the automotive industry». JEC Composites magazine / N° 147, 2022, p. 33 – 36.