Staircase paradox

Last updated
Staircases converging pointwise to the diagonal of a unit square, but not converging to its length Quadrat Diagonale.svg
Staircases converging pointwise to the diagonal of a unit square, but not converging to its length

In mathematical analysis, the staircase paradox is a pathological example showing that limits of curves do not necessarily preserve their length. [1] It consists of a sequence of "staircase" polygonal chains in a unit square, formed from horizontal and vertical line segments of decreasing length, so that these staircases converge uniformly to the diagonal of the square. [2] However, each staircase has length two, while the length of the diagonal is the square root of 2, so the sequence of staircase lengths does not converge to the length of the diagonal. [3] [4] Martin Gardner calls this "an ancient geometrical paradox". [5] It shows that, for curves under uniform convergence, the length of a curve is not a continuous function of the curve. [6]

Contents

For any smooth curve, polygonal chains with segment lengths decreasing to zero, connecting consecutive vertices along the curve, always converge to the arc length. The failure of the staircase curves to converge to the correct length can be explained by the fact that some of their vertices do not lie on the diagonal. [7] In higher dimensions, the Schwarz lantern provides an analogous example showing that polyhedral surfaces that converge pointwise to a curved surface do not necessarily converge to its area, even when the vertices all lie on the surface. [8]

As well as highlighting the need for careful definitions of arc length in mathematics education, [9] the paradox has applications in digital geometry, where it motivates methods of estimating the perimeter of pixelated shapes that do not merely sum the lengths of boundaries between pixels. [10]

See also

Related Research Articles

<span class="mw-page-title-main">Area</span> Size of a two-dimensional surface

Area is the measure of a region's size on a surface. The area of a plane region or plane area refers to the area of a shape or planar lamina, while surface area refers to the area of an open surface or the boundary of a three-dimensional object. Area can be understood as the amount of material with a given thickness that would be necessary to fashion a model of the shape, or the amount of paint necessary to cover the surface with a single coat. It is the two-dimensional analogue of the length of a curve or the volume of a solid . Two different regions may have the same area ; by synecdoche, "area" sometimes is used to refer to the region, as in a "polygonal area".

<span class="mw-page-title-main">Congruence (geometry)</span> Relationship between two figures of the same shape and size, or mirroring each other

In geometry, two figures or objects are congruent if they have the same shape and size, or if one has the same shape and size as the mirror image of the other.

<span class="mw-page-title-main">Kite (geometry)</span> Quadrilateral symmetric across a diagonal

In Euclidean geometry, a kite is a quadrilateral with reflection symmetry across a diagonal. Because of this symmetry, a kite has two equal angles and two pairs of adjacent equal-length sides. Kites are also known as deltoids, but the word deltoid may also refer to a deltoid curve, an unrelated geometric object sometimes studied in connection with quadrilaterals. A kite may also be called a dart, particularly if it is not convex.

<span class="mw-page-title-main">Prism (geometry)</span> Solid with 2 parallel n-gonal bases connected by n parallelograms

In geometry, a prism is a polyhedron comprising an n-sided polygon base, a second base which is a translated copy of the first, and n other faces, necessarily all parallelograms, joining corresponding sides of the two bases. All cross-sections parallel to the bases are translations of the bases. Prisms are named after their bases, e.g. a prism with a pentagonal base is called a pentagonal prism. Prisms are a subclass of prismatoids.

<span class="mw-page-title-main">Pick's theorem</span> Formula for area of a grid polygon

In geometry, Pick's theorem provides a formula for the area of a simple polygon with integer vertex coordinates, in terms of the number of integer points within it and on its boundary. The result was first described by Georg Alexander Pick in 1899. It was popularized in English by Hugo Steinhaus in the 1950 edition of his book Mathematical Snapshots. It has multiple proofs, and can be generalized to formulas for certain kinds of non-simple polygons.

<span class="mw-page-title-main">Discrete geometry</span> Branch of geometry that studies combinatorial properties and constructive methods

Discrete geometry and combinatorial geometry are branches of geometry that study combinatorial properties and constructive methods of discrete geometric objects. Most questions in discrete geometry involve finite or discrete sets of basic geometric objects, such as points, lines, planes, circles, spheres, polygons, and so forth. The subject focuses on the combinatorial properties of these objects, such as how they intersect one another, or how they may be arranged to cover a larger object.

<span class="mw-page-title-main">Unit cube</span> Cube with edge length one

A unit cube, more formally a cube of side 1, is a cube whose sides are 1 unit long. The volume of a 3-dimensional unit cube is 1 cubic unit, and its total surface area is 6 square units.

<span class="mw-page-title-main">Midpoint</span> Point on a line segment which is equidistant from both endpoints

In geometry, the midpoint is the middle point of a line segment. It is equidistant from both endpoints, and it is the centroid both of the segment and of the endpoints. It bisects the segment.

<span class="mw-page-title-main">Concyclic points</span> Points on a common circle

In geometry, a set of points are said to be concyclic if they lie on a common circle. A polygon whose vertices are concyclic is called a cyclic polygon, and the circle is called its circumscribing circle or circumcircle. All concyclic points are equidistant from the center of the circle.

<span class="mw-page-title-main">Curve of constant width</span> Shape with width independent of orientation

In geometry, a curve of constant width is a simple closed curve in the plane whose width is the same in all directions. The shape bounded by a curve of constant width is a body of constant width or an orbiform, the name given to these shapes by Leonhard Euler. Standard examples are the circle and the Reuleaux triangle. These curves can also be constructed using circular arcs centered at crossings of an arrangement of lines, as the involutes of certain curves, or by intersecting circles centered on a partial curve.

<span class="mw-page-title-main">Triaugmented triangular prism</span> Convex polyhedron with 14 triangle faces

The triaugmented triangular prism, in geometry, is a convex polyhedron with 14 equilateral triangles as its faces. It can be constructed from a triangular prism by attaching equilateral square pyramids to each of its three square faces. The same shape is also called the tetrakis triangular prism, tricapped trigonal prism, tetracaidecadeltahedron, or tetrakaidecadeltahedron; these last names mean a polyhedron with 14 triangular faces. It is an example of a deltahedron and of a Johnson solid.

<span class="mw-page-title-main">Simple polygon</span> Shape bounded by non-intersecting line segments

In geometry, a simple polygon is a polygon that does not intersect itself and has no holes. That is, it is a piecewise-linear Jordan curve consisting of finitely many line segments. These polygons include as special cases the convex polygons, star-shaped polygons, and monotone polygons.

<span class="mw-page-title-main">Centre (geometry)</span> Middle of the object in geometry

In geometry, a centre or center of an object is a point in some sense in the middle of the object. According to the specific definition of centre taken into consideration, an object might have no centre. If geometry is regarded as the study of isometry groups, then a centre is a fixed point of all the isometries that move the object onto itself.

<span class="mw-page-title-main">Coastline paradox</span> Counterintuitive observation that the coastline of a landmass does not have a well-defined length

The coastline paradox is the counterintuitive observation that the coastline of a landmass does not have a well-defined length. This results from the fractal curve–like properties of coastlines; i.e., the fact that a coastline typically has a fractal dimension. Although the "paradox of length" was previously noted by Hugo Steinhaus, the first systematic study of this phenomenon was by Lewis Fry Richardson, and it was expanded upon by Benoit Mandelbrot.

<span class="mw-page-title-main">Digon</span> Polygon with 2 sides and 2 vertices

In geometry, a digon is a polygon with two sides (edges) and two vertices. Its construction is degenerate in a Euclidean plane because either the two sides would coincide or one or both would have to be curved; however, it can be easily visualised in elliptic space.

In geometry, a vertex is a point where two or more curves, lines, or edges meet or intersect. As a consequence of this definition, the point where two lines meet to form an angle and the corners of polygons and polyhedra are vertices.

<span class="mw-page-title-main">Prince Rupert's cube</span> Cube that fits through hole in smaller cube

In geometry, Prince Rupert's cube is the largest cube that can pass through a hole cut through a unit cube without splitting it into two pieces. Its side length is approximately 1.06, 6% larger than the side length 1 of the unit cube through which it passes. The problem of finding the largest square that lies entirely within a unit cube is closely related, and has the same solution.

<span class="mw-page-title-main">Convex curve</span> Type of plane curve

In geometry, a convex curve is a plane curve that has a supporting line through each of its points. There are many other equivalent definitions of these curves, going back to Archimedes. Examples of convex curves include the convex polygons, the boundaries of convex sets, and the graphs of convex functions. Important subclasses of convex curves include the closed convex curves, the smooth curves that are convex, and the strictly convex curves, which have the additional property that each supporting line passes through a unique point of the curve.

<span class="mw-page-title-main">Opaque set</span> Shape that blocks all lines of sight

In discrete geometry, an opaque set is a system of curves or other set in the plane that blocks all lines of sight across a polygon, circle, or other shape. Opaque sets have also been called barriers, beam detectors, opaque covers, or opaque forests. Opaque sets were introduced by Stefan Mazurkiewicz in 1916, and the problem of minimizing their total length was posed by Frederick Bagemihl in 1959.

<span class="mw-page-title-main">Schwarz lantern</span> Near-cylindrical polyhedron with large area

In mathematics, the Schwarz lantern is a polyhedral approximation to a cylinder, used as a pathological example of the difficulty of defining the area of a smooth (curved) surface as the limit of the areas of polyhedra. It is formed by stacked rings of isosceles triangles, arranged within each ring in the same pattern as an antiprism. The resulting shape can be folded from paper, and is named after mathematician Hermann Schwarz and for its resemblance to a cylindrical paper lantern. It is also known as Schwarz's boot, Schwarz's polyhedron, or the Chinese lantern.

References

  1. Moscovich, Ivan (2006), Loopy Logic Problems and Other Puzzles, New York: Sterling Publishing, p. 23, ISBN   9780486490694
  2. Farrell, Margaret A. (February 1975), "An intuitive leap or an unscholarly lapse?", The Mathematics Teacher, 68 (2): 149–152, doi:10.5951/mt.68.2.0149, JSTOR   27960047
  3. Sedaghat, H. (2022), Real Analysis and Infinity, Oxford University Press, p. 9, ISBN   9780192895622
  4. Stewart, Ian (2017), "Diagonal of a square", Infinity: A Very Short Introduction, Oxford University Press, pp. 43 & 54, ISBN   9780191071515
  5. Thompson, Silvanus P.; Gardner, Martin (1998), "Appendix: Some recreational problems related to calculus", Calculus Made Easy, Palgrave, pp. 296–325. See pp. 305–306.
  6. Sinitsky, Ilya; Ilany, Bat-Sheva (2016), Change and Invariance: A Textbook on Algebraic Insight into Numbers and Shapes, Sense Publishers, pp. 375–376, doi:10.1007/978-94-6300-699-6, ISBN   978-94-6300-699-6
  7. Krantz, Steven G. (2010), "15.1: How to measure the length of a curve", An Episodic History of Mathematics: Mathematical Culture Through Problem Solving, MAA Textbooks, Washington, DC: Mathematical Association of America, pp.  https://books.google.com/books?id=ulmAH-6IzNoC&pg=PA249, ISBN   978-0-88385-766-3, MR   2604456
  8. Ogilvy, C. Stanley (1962), "Note to page 7", Tomorrow's Math: Unsolved Problems for the Amateur, Oxford University Press, pp. 155–161
  9. Bennett, Albert A. (February 10, 1920), "Limit proofs in geometry", The Texas Mathematics Teachers' Bulletin, 5 (2): 12–22; see especially p. 16
  10. Klette, Reinhard; Yip, Ben (2000), "The length of digital curves", Machine Graphics and Vision, 9 (3): 673–703