Stephen L. Adler

Last updated
Stephen L. Adler
Born (1939-11-30) 30 November 1939 (age 83)
Known for Adler–Bell–Jackiw anomaly
Adler–Weisberger formula
Adler–Bardeen theorem
Awards J. J. Sakurai Prize (1988)
Dirac Medal (1998)
Scientific career
Fields Physicist
Institutions Institute for Advanced Study

Stephen Louis Adler (born November 30, 1939) is an American physicist specializing in elementary particles and field theory. He is currently professor emeritus in the school of natural sciences at the Institute for Advanced Study in Princeton, New Jersey.

Contents

Biography

Adler was born in New York City. He received an A.B. degree at Harvard University in 1961, where he was a Putnam Fellow in 1959, [1] and a Ph.D. from Princeton University in 1964. Adler completed his doctoral dissertation, titled High energy neutrino reactions and conservations hypotheses, under the supervision of Sam Treiman. [2] He is the son of Irving Adler, an American author, teacher, mathematician, scientist and political activist, and Ruth Adler and older brother of Peggy Adler.

Adler became a member of the Institute for Advanced Study in 1966, becoming a full professor of theoretical physics in 1969, and was named "New Jersey Albert Einstein Professor" at the institute in 1979. He was elected a member of the American Academy of Arts and Sciences in 1974, and a member of the National Academy of Sciences in 1975. [3] [4] [5]

He has won the J. J. Sakurai Prize from the American Physical Society in 1988, and the Dirac Medal of the International Centre for Theoretical Physics in 1998, among other awards.

Adler's seminal papers on high energy neutrino processes, current algebra, soft pion theorems, sum rules, and perturbation theory anomalies helped lay the foundations for the current standard model of elementary particle physics.

In 2012, Adler contributed to a family venture when he wrote the foreword for his then 99-year-old father's 87th book, Solving the Riddle of Phyllotaxis: Why the Fibonacci Numbers and the Golden Ratio Occur on Plants . The book's diagrams are by his sister Peggy. [6]

Trace dynamics

In his book Quantum Theory as an Emergent Phenomenon, published 2004, Adler presented his trace dynamics, a framework in which quantum field theory emerges from a matrix theory. In this matrix theory, particles are represented by non-commuting matrices, and the matrix elements of bosonic and fermionic particles are ordinary complex numbers and non-commuting Grassmann numbers, respectively. Using the action principle, a Lagrangian can be constructed from the trace of a polynomial function of these matrices, leading to Hamiltonian equations of motion. The construction of a statistical mechanics of these matrix models leads, so Adler says, to an "emergent effective complex quantum field theory". [7] [8]

Adler's Trace Dynamics has been discussed in relation to the differential space theory of quantum systems by Norbert Wiener and Amand Siegel, to its variant by David Bohm and Jeffrey Bub, and to modifications of the Schrödinger equation by additional terms such as the quantum potential term or stochastic terms, and to hidden variable theories. [9]

See also

Publications

Books

Related Research Articles

Mechanics is the area of mathematics and physics concerned with the relationships between force, matter, and motion among physical objects. Forces applied to objects result in displacements or changes of an object's position relative to its environment.

<span class="mw-page-title-main">Particle physics</span> Study of subatomic particles and forces

Particle physics or high energy physics is the study of fundamental particles and forces that constitute matter and radiation. The fundamental particles in the universe are classified in the Standard Model as fermions and bosons. There are three generations of fermions, although ordinary matter is made only from the first fermion generation. The first generation consists of up and down quarks which form protons and neutrons, and electrons and electron neutrinos. The three fundamental interactions known to be mediated by bosons are electromagnetism, the weak interaction, and the strong interaction.

The following outline is provided as an overview of and topical guide to physics:

In physics, statistical mechanics is a mathematical framework that applies statistical methods and probability theory to large assemblies of microscopic entities. It does not assume or postulate any natural laws, but explains the macroscopic behavior of nature from the behavior of such ensembles.

<span class="mw-page-title-main">Computational physics</span> Numerical simulations of physical problems via computers

Computational physics is the study and implementation of numerical analysis to solve problems in physics. Historically, computational physics was the first application of modern computers in science, and is now a subset of computational science. It is sometimes regarded as a subdiscipline of theoretical physics, but others consider it an intermediate branch between theoretical and experimental physics — an area of study which supplements both theory and experiment.

<span class="mw-page-title-main">Lee Smolin</span> American theoretical physicist (born 1955)

Lee Smolin is an American theoretical physicist, a faculty member at the Perimeter Institute for Theoretical Physics, an adjunct professor of physics at the University of Waterloo and a member of the graduate faculty of the philosophy department at the University of Toronto. Smolin's 2006 book The Trouble with Physics criticized string theory as a viable scientific theory. He has made contributions to quantum gravity theory, in particular the approach known as loop quantum gravity. He advocates that the two primary approaches to quantum gravity, loop quantum gravity and string theory, can be reconciled as different aspects of the same underlying theory. He also advocates an alternative view on space and time that he calls temporal naturalism. His research interests also include cosmology, elementary particle theory, the foundations of quantum mechanics, and theoretical biology.

The many-body problem is a general name for a vast category of physical problems pertaining to the properties of microscopic systems made of many interacting particles. Microscopic here implies that quantum mechanics has to be used to provide an accurate description of the system. Many can be anywhere from three to infinity, although three- and four-body systems can be treated by specific means and are thus sometimes separately classified as few-body systems.

<span class="mw-page-title-main">Leonard Susskind</span> American physicist (born 1940)

Leonard Susskind is an American physicist, who is a professor of theoretical physics at Stanford University, and founding director of the Stanford Institute for Theoretical Physics. His research interests include string theory, quantum field theory, quantum statistical mechanics and quantum cosmology. He is a member of the US National Academy of Sciences, and the American Academy of Arts and Sciences, an associate member of the faculty of Canada's Perimeter Institute for Theoretical Physics, and a distinguished professor of the Korea Institute for Advanced Study.

In particle physics, flavour or flavor refers to the species of an elementary particle. The Standard Model counts six flavours of quarks and six flavours of leptons. They are conventionally parameterized with flavour quantum numbers that are assigned to all subatomic particles. They can also be described by some of the family symmetries proposed for the quark-lepton generations.

<span class="mw-page-title-main">Nikolay Bogolyubov</span> Soviet mathematician and theoretical physicist (1909–1992)

Nikolay Nikolayevich Bogolyubov, also transliterated as Bogoliubov and Bogolubov, was a Soviet and Russian mathematician and theoretical physicist known for a significant contribution to quantum field theory, classical and quantum statistical mechanics, and the theory of dynamical systems; he was the recipient of the 1992 Dirac Medal.

The Max-Planck-Institut für Kernphysik is a research institute in Heidelberg, Germany.

The J. J. Sakurai Prize for Theoretical Particle Physics, is presented by the American Physical Society at its annual April Meeting, and honors outstanding achievement in particle physics theory. The prize consists of a monetary award (US$10,000), a certificate citing the contributions recognized by the award, and a travel allowance for the recipient to attend the presentation. The award is endowed by the family and friends of particle physicist J. J. Sakurai. The prize has been awarded annually since 1985.

<span class="mw-page-title-main">Physics beyond the Standard Model</span> Theories trying to extend known physics

Physics beyond the Standard Model (BSM) refers to the theoretical developments needed to explain the deficiencies of the Standard Model, such as the inability to explain the fundamental parameters of the standard model, the strong CP problem, neutrino oscillations, matter–antimatter asymmetry, and the nature of dark matter and dark energy. Another problem lies within the mathematical framework of the Standard Model itself: the Standard Model is inconsistent with that of general relativity, and one or both theories break down under certain conditions, such as spacetime singularities like the Big Bang and black hole event horizons.

Asım Orhan Barut was a Turkish-American theoretical physicist.

<span class="mw-page-title-main">Giorgio Parisi</span> Italian physicist

Giorgio Parisi is an Italian theoretical physicist, whose research has focused on quantum field theory, statistical mechanics and complex systems. His best known contributions are the QCD evolution equations for parton densities, obtained with Guido Altarelli, known as the Altarelli–Parisi or DGLAP equations, the exact solution of the Sherrington–Kirkpatrick model of spin glasses, the Kardar–Parisi–Zhang equation describing dynamic scaling of growing interfaces, and the study of whirling flocks of birds. He was awarded the 2021 Nobel Prize in Physics jointly with Klaus Hasselmann and Syukuro Manabe for groundbreaking contributions to theory of complex systems, in particular "for the discovery of the interplay of disorder and fluctuations in physical systems from atomic to planetary scales".

<span class="mw-page-title-main">Riazuddin (physicist)</span> Pakistani theoretical physicist

Riazuddin, also spelled as Riaz-Ud-Din, was a Pakistani theoretical physicist, specialising in high-energy physics and nuclear physics. Starting his scientific research in physics in 1958, Riazuddin was considered one of the early pioneers of Pakistan's nuclear weapons development and atomic deterrence development. He was the director of the Theoretical Physics Group (TPG) of the Pakistan Atomic Energy Commission (PAEC) from 1974 until 1984. Riazuddin was a pupil of the winner of the 1979 Nobel Prize in Physics, Abdus Salam.

Tommy Ohlsson is a Swedish physicist. He is a full professor in theoretical physics with specialization in elementary particle physics at the Royal Institute of Technology (KTH) in Stockholm, Sweden, situated at the AlbaNova University Center. His research field is theoretical particle physics, particularly neutrino physics and physics beyond the so-called Standard Model. He is an author of around hundred scientific publications and one textbook. He has also written a popular science text about the theory of special relativity at Nobelprize.org.

<span class="mw-page-title-main">Sudhir Ranjan Jain</span> Indian theoretical physicist

Sudhir Ranjan Jain is an Indian theoretical physicist at the Bhabha Atomic Research Centre, Mumbai, known for his contributions in complex quantum systems and Nonlinear dynamics. He was a scientist at the nuclear physics division of Bhabha Atomic Research Centre, a professor at Homi Bhabha National Institute and is an adjunct professor and member of the Academic Board at the Centre for Excellence in Basic Sciences. He has authored Mechanics, Waves and Thermodynamics: An Example-based Approach and A Primer on Fluid Mechanics with Applications. His doctoral advisor was Prof. Suresh V. Lawande, who was a student of Edward Teller.

<i>Solving the Riddle of Phyllotaxis</i>

Solving the Riddle of Phyllotaxis: Why the Fibonacci Numbers and the Golden Ratio Occur in Plants is a book on the mathematics of plant structure, and in particular on phyllotaxis, the arrangement of leaves on plant stems. It was written by Irving Adler, and published in 2012 by World Scientific. The Basic Library List Committee of the Mathematical Association of America has suggested its inclusion in undergraduate mathematics libraries.

References

  1. "Putnam Competition Individual and Team Winners". Mathematical Association of America . Retrieved December 12, 2021.
  2. "High energy neutrino reactions and conservations hypotheses". 1964.
  3. "Book of Members, 1780-2010: Chapter A" (PDF). American Academy of Arts and Sciences. Retrieved 6 April 2011.
  4. "Stephen L. Adler". Institute for Advanced Study. Retrieved 2019-08-07.
  5. "Stephen L. Adler".
  6. Adler, Irving. Solving the Riddle of Phyllotaxis: Why the Fibonacci Numbers and the Golden Ratio Occur On Plants.
  7. Quantum Theory as an Emergent Phenomenon: Book review by Collin Carbno Archived 2013-12-24 at the Wayback Machine
  8. See also the review of Adler's trace dynamics in Tejinder P. Singh: The connection between 'emergence of time from quantum gravity' and 'dynamical collapse of the wave-function in quantum mechanics', International Journal of Modern Physics D, vol. 19, no. 14 (2010), pp. 2265–2269, World Scientific Publishing Company, DOI 10.1142/S0218271810018335 (full text). Preprint: arXiv:1005.2682v2 (submitted on 15 May 2010, version of 12 October 2010)
  9. Mark Davidson: Stochastic mechanics, trace dynamics, and differential space – a synthesis, arXiv:quant-ph/0602211, submitted 25 February 2006, version of 21 Mar 2006
  10. Finkelstein, David Ritz (1996). "Review of Quaternionic quantum mechanics and quantum fields by Stephen L. Adler". Physics Today. 49 (6): 58–59. Bibcode:1996PhT....49f..58A. doi:10.1063/1.2807659.