Sundance Sea

Last updated

The Sundance Sea was an epeiric sea that existed in North America during the mid-to-late Jurassic Period of the Mesozoic Era. [1] It was an arm of what is now the Arctic Ocean, and extended through what is now western Canada into the central western United States. The sea receded when highlands to the west began to rise.

Contents

Stratigraphy

The Sundance Sea did not occur at a single time; geological evidence suggests that the Sea was actually a series of five successive marine transgressions—each separated by an erosional hiatus—which advanced and receded from the middle Jurassic onward. [1] The terrestrial sediments of the Morrison Formation—eroded from rising highlands to the west—were deposited on top of the marine Sundance sediments as the sea regressed for the last time late in the Jurassic. [2] [3]

Fauna

The Sundance Sea was rich in many types of animals. Gryphaea was extremely common, and shark teeth have been found. In addition to fish, belemnites and to an extent ammonites have been found in sediments from the Sundance Sea. [4] Crinoids and bivalves would have dotted the seafloor. Ophthalmosaurus , a large 20-foot (6 m) long ichthyosaur, swam in the seas using its large, long jaws to catch belemnite 'squid'. [4] Pantosaurus , a 15–20 foot (4.5–6 m) long cryptoclidid plesiosaur, went after the easier-to-catch fish. [5] The largest marine reptile in the Sundance Sea was Megalneusaurus , a 25-foot (8 m) long pliosaur similar to Liopleurodon . [6] Its fossils have been found in Alaska and Wyoming, which were both covered by the Sundance Sea when it was alive.

During the periods of recession, dinosaurs and other Jurassic terrestrial animals frequented the shores, as evidenced by the Red Gulch Dinosaur Tracksite near Shell, Wyoming.

See also

Related Research Articles

<span class="mw-page-title-main">Triassic</span> First period of the Mesozoic Era 252–201 million years ago

The Triassic is a geologic period and system which spans 50.5 million years from the end of the Permian Period 251.902 million years ago (Mya), to the beginning of the Jurassic Period 201.4 Mya. The Triassic is the first and shortest period of the Mesozoic Era. Both the start and end of the period are marked by major extinction events. The Triassic Period is subdivided into three epochs: Early Triassic, Middle Triassic and Late Triassic.

<span class="mw-page-title-main">Western Interior Seaway</span> Prehistoric inland sea that split the continent of North America

The Western Interior Seaway was a large inland sea that split the continent of North America into two landmasses. The ancient sea, which existed from the early Late Cretaceous to the earliest Paleocene, connected the Gulf of Mexico to the Arctic Ocean. The two land masses it created were Laramidia to the west and Appalachia to the east. At its largest extent, it was 2,500 feet (760 m) deep, 600 miles (970 km) wide and over 2,000 miles (3,200 km) long.

<span class="mw-page-title-main">Morrison Formation</span> Rock formation in the western United States

The Morrison Formation is a distinctive sequence of Upper Jurassic sedimentary rock found in the western United States which has been the most fertile source of dinosaur fossils in North America. It is composed of mudstone, sandstone, siltstone, and limestone and is light gray, greenish gray, or red. Most of the fossils occur in the green siltstone beds and lower sandstones, relics of the rivers and floodplains of the Jurassic period.

<span class="mw-page-title-main">South Polar region of the Cretaceous</span> Animals that lived below the Antarctic circle in the Cretaceous

The South Polar region of the Cretaceous comprised the continent of East Gondwana–modern day Australia, Zealandia, and Antarctica–a product of the break-up of Gondwana in the Cretaceous Period. The southern region, during this time, was much warmer than it is today, ranging from perhaps 4–8 °C (39–46 °F) in the latest Cretaceous Maastrichtian in what is now southeastern Australia. This prevented permanent ice sheets from developing and fostered polar forests, which were largely dominated by conifers, cycads, and ferns, and relied on a temperate climate and heavy rainfall. Major fossil-bearing geological formations that record this area are: the Santa Marta and Sobral Formations of Seymour Island off the Antarctic Peninsula; the Snow Hill Island, Lopez de Bertodano, and the Hidden Lake Formations on James Ross Island also off the Antarctic Peninsula; and the Eumeralla and Wonthaggi Formations in Australia.

<span class="mw-page-title-main">Middle Jurassic</span> Second part of the Jurassic geological period, from 174 to 163 million years ago

The Middle Jurassic is the second epoch of the Jurassic Period. It lasted from about 174.1 to 163.5 million years ago. Fossils of land-dwelling animals, such as dinosaurs, from the Middle Jurassic are relatively rare, but geological formations containing land animal fossils include the Forest Marble Formation in England, the Kilmaluag Formation in Scotland, the Calcaire de Caen of France, the Daohugou Beds in China, the Itat Formation in Russia, the Tiouraren Formation of Niger, and the Isalo III Formation of western Madagascar.

<i>Muraenosaurus</i> Extinct genus of reptiles

Muraenosaurus is an extinct genus of cryptoclidid plesiosaur reptile from the Oxford Clay of Southern England. The genus was given its name due to the eel-like appearance of the long neck and small head. Muraenosaurus grew up to 5.2 metres (17 ft) in length and lived roughly between 160 Ma and 164 Ma in the Callovian of the middle Jurassic. Charles E. Leeds collected the first Muraenosaurus which was then described by H. G. Seeley. The specimen may have suffered some damage due to the casual style of Charles Leeds’ collection. The first muraenosaur was recovered with pieces missing from the skull and many of the caudal vertebrae absent. Because the animal was described from Charles Leeds’ collection it was given the name Muraenosaurus Leedsi. M. leedsi is the most complete specimen belonging to the genus Muraenosaurus and also the only species that is undoubtedly a member of the genus. Two other species have been tentatively referred to as members of the genus Muraenosaurus: M. reedii and Muraenosaurus beloclis Seeley 1892, which in 1909 became the separate genus Picrocleidus.

<span class="mw-page-title-main">Red Gulch Dinosaur Tracksite</span> Dinosaur fossil site in Wyoming, US

Red Gulch Dinosaur Tracksite is an assemblage of fossil dinosaur footprints on public land near Shell, in Big Horn County, Wyoming.

<span class="mw-page-title-main">Dakota Formation</span> Rock units in midwestern North America

The Dakota is a sedimentary geologic unit name of formation and group rank in Midwestern North America. The Dakota units are generally composed of sandstones, mudstones, clays, and shales deposited in the Mid-Cretaceous opening of the Western Interior Seaway. The usage of the name Dakota for this particular Albian-Cenomanian strata is exceptionally widespread; from British Columbia and Alberta to Montana and Wisconsin to Colorado and Kansas to Utah and Arizona. It is famous for producing massive colorful rock formations in the Rocky Mountains and the Great Plains of the United States, and for preserving both dinosaur footprints and early deciduous tree leaves.

<i>Megalneusaurus</i> Extinct genus of reptiles

Megalneusaurus is an extinct genus of large pliosaur that lived in the Sundance Sea during the Kimmeridgian, ~156-152 million years ago, in the Late Jurassic. It was named by paleontologist W. C. Knight in 1895.

Pantosaurus is an extinct genus of plesiosaur from the Late Jurassic (Oxfordian) of what is now Wyoming. It lived in what used to be the Sundance Sea. It was originally named Parasaurus by Othniel Charles Marsh in reference to Plesiosaurus, but that name was preoccupied, and Marsh changed it. The species Muraenosaurus reedii is in fact a junior synonym of Pantosaurus. The holotype YPM 543 is a partial articulated skeleton, partially prepared to yield a distal humerus, four articulated carpals, a fragment of the coracoid, and several isolated cervical vertebrae from the Upper Member of the Sundance Formation. Other material includes USNM 536963, USNM 536965, UW 3, UW 5544 and UW 15938.

<i>Tatenectes</i> Genus of extinct plesiosaur from the upper Jurassic

Tatenectes is a genus of cryptoclidid plesiosaur known from the Upper Jurassic of Wyoming. Its remains were recovered from the Redwater Shale Member of the Sundance Formation, and initially described as a new species of Cimoliosaurus by Wilbur Clinton Knight in 1900. It was reassigned to Tricleidus by Maurice G. Mehl in 1912 before being given its own genus by O'Keefe and Wahl in 2003. Tatenectes laramiensis is the type and only species of Tatenectes. While the original specimen was lost, subsequent discoveries have revealed that Tatenectes was a very unusual plesiosaur. Its torso had a flattened, boxy cross-section and its gastralia exhibit pachyostosis (thickening). The total length of Tatenectes has been estimated at 2–3 meters (6.6–9.8 ft).

<i>Pachycostasaurus</i> Extinct species of reptile

Pachycostasaurus is an extinct Pliosauroid from the Oxford Clay formation of Peterborough, England.

The Sundance Formation is a western North American sequence of Middle Jurassic to Upper Jurassic age Dating from the Bathonian to the Oxfordian, around 168-157 Ma, It is up to 100 metres thick and consists of marine shale, sandy shale, sandstone, and limestone deposited in the Sundance Sea, an inland sea that covered large parts of western North America during the Middle and early Late Jurassic.

<span class="mw-page-title-main">Moenave Formation</span> Geologic formation in Utah and Arizona

The Moenave Formation is a Mesozoic geologic formation, in the Glen Canyon Group. It is found in Utah and Arizona.

<span class="mw-page-title-main">Paleontology in Iowa</span>

Paleontology in Iowa refers to paleontological research occurring within or conducted by people from the U.S. state of Iowa. The paleozoic fossil record of Iowa spans from the Cambrian to Mississippian. During the early Paleozoic Iowa was covered by a shallow sea that would later be home to creatures like brachiopods, bryozoans, cephalopods, corals, fishes, and trilobites. Later in the Paleozoic, this sea left the state, but a new one covered Iowa during the early Mesozoic. As this sea began to withdraw a new subtropical coastal plain environment which was home to duck-billed dinosaurs spread across the state. Later this plain was submerged by the rise of the Western Interior Seaway, where plesiosaurs lived. The early Cenozoic is missing from the local rock record, but during the Ice Age evidence indicates that glaciers entered the state, which was home to mammoths and mastodons.

<span class="mw-page-title-main">Paleontology in Wyoming</span> Research on extinct life in Wyoming

Paleontology in Wyoming includes research into the prehistoric life of the U.S. state of Wyoming as well as investigations conducted by Wyomingite researchers and institutions into ancient life occurring elsewhere.

<span class="mw-page-title-main">Paleontology in Colorado</span> Paleontological research in the U.S. state of Colorado

Paleontology in Colorado refers to paleontological research occurring within or conducted by people from the U.S. state of Colorado. The geologic column of Colorado spans about one third of Earth's history. Fossils can be found almost everywhere in the state but are not evenly distributed among all the ages of the state's rocks. During the early Paleozoic, Colorado was covered by a warm shallow sea that would come to be home to creatures like brachiopods, conodonts, ostracoderms, sharks and trilobites. This sea withdrew from the state between the Silurian and early Devonian leaving a gap in the local rock record. It returned during the Carboniferous. Areas of the state not submerged were richly vegetated and inhabited by amphibians that left behind footprints that would later fossilize. During the Permian, the sea withdrew and alluvial fans and sand dunes spread across the state. Many trace fossils are known from these deposits.

<span class="mw-page-title-main">Paleontology in Utah</span> Paleontological research in Utah

Paleontology in Utah refers to paleontological research occurring within or conducted by people from the U.S. state of Utah. Utah has a rich fossil record spanning almost all of the geologic column. During the Precambrian, the area of northeastern Utah now occupied by the Uinta Mountains was a shallow sea which was home to simple microorganisms. During the early Paleozoic Utah was still largely covered in seawater. The state's Paleozoic seas would come to be home to creatures like brachiopods, fishes, and trilobites. During the Permian the state came to resemble the Sahara desert and was home to amphibians, early relatives of mammals, and reptiles. During the Triassic about half of the state was covered by a sea home to creatures like the cephalopod Meekoceras, while dinosaurs whose footprints would later fossilize roamed the forests on land. Sand dunes returned during the Early Jurassic. During the Cretaceous the state was covered by the sea for the last time. The sea gave way to a complex of lakes during the Cenozoic era. Later, these lakes dissipated and the state was home to short-faced bears, bison, musk oxen, saber teeth, and giant ground sloths. Local Native Americans devised myths to explain fossils. Formally trained scientists have been aware of local fossils since at least the late 19th century. Major local finds include the bonebeds of Dinosaur National Monument. The Jurassic dinosaur Allosaurus fragilis is the Utah state fossil.

<span class="mw-page-title-main">Paleontology in Alaska</span> Overview of research on ancient fossils in Alaska

Paleontology in Alaska refers to paleontological research occurring within or conducted by people from the U.S. state of Alaska. During the Late Precambrian, Alaska was covered by a shallow sea that was home to stromatolite-forming bacteria. Alaska remained submerged into the Paleozoic era and the sea came to be home to creatures including ammonites, brachiopods, and reef-forming corals. An island chain formed in the eastern part of the state. Alaska remained covered in seawater during the Triassic and Jurassic. Local wildlife included ammonites, belemnites, bony fish and ichthyosaurs. Alaska was a more terrestrial environment during the Cretaceous, with a rich flora and dinosaur fauna.

The geological history of North America comprises the history of geological occurrences and emergence of life in North America during the interval of time spanning from the formation of the Earth through to the emergence of humanity and the start of prehistory. At the start of the Paleozoic Era, what is now "North" America was actually in the Southern Hemisphere. Marine life flourished in the country's many seas, although terrestrial life had not yet evolved. During the latter part of the Paleozoic, seas were largely replaced by swamps home to amphibians and early reptiles. When the continents had assembled into Pangaea, drier conditions prevailed. The evolutionary precursors to mammals dominated the country until a mass extinction event ended their reign.

References

  1. 1 2 Fanning, Suzette. "Stratigraphy of the Sundance Formation" . Retrieved 2007-02-06.[ dead link ]
  2. Kuehn, Steve. "Geology of the Mesozoic Era: 245 to 66 million years ago" (PDF). Department of Physics, Physical Sciences, and Geology at California State University, Stanislaus. Archived from the original (PDF) on 2006-09-14. Retrieved 2007-02-06.
  3. "Mesozoic Stratigraphy in the Thermopolis Area". Big Horn Basin Foundation. Retrieved 2007-02-06.
  4. 1 2 "Meet the marine life of the Sundance Sea | The Children's Museum of Indianapolis". www.childrensmuseum.org. Retrieved 2022-01-28.
  5. O'Keefe FR, and Wahl W. (2003). "Current taxonomic status of the plesiosaur Pantosaurus striatus from the Upper Jurassic Sundance Formation, Wyoming". Paludicola. 4 (2): 37–46.
  6. Knight WC. 1895 A new Jurassic plesiosaur from Wyoming. Science2: 449.