Swapan Chattopadhyay | |
---|---|
Born | |
Nationality | American |
Citizenship | United States |
Alma mater | University of Calcutta (BSc) IIT, Kharaghpur (MSc) University of California, Berkeley (MS, PhD) |
Spouse | Janet Chaterji |
Children | 2 |
Scientific career | |
Fields | Physics |
Institutions | SLAC and Stanford University (2021–) Northern Illinois University and Fermi National Accelerator Laboratory (2014–) Cockcroft Institute (2007–2014) Universities of Liverpool, Manchester and Lancaster, UK (2007–2014) Thomas Jefferson National Accelerator Facility (2001–2007) University of California at Berkeley (1974–1982, 1984–2001, 2009–2011, 2013–2015, 2023–) Lawrence Berkeley National Laboratory (1976–1982, 1984–2001) CERN (1982–1984, 2008–) |
Thesis | On stochastic cooling of bunched beams from fluctuation and kinetic theory |
Doctoral advisors | Joseph J. Bisognano |
Other academic advisors | Prof. Wulf Kunkel Prof. Owen Chamberlain |
Signature | |
Swapan Chattopadhyay CorrFRSE (born December 26, 1951) is an Indian American physicist. Chattopadhyay completed his PhD from the University of California (Berkeley) in 1982. [1]
Currently, Chattopadhyay is part-time Faculty at University of California at Berkeley, adjunct professor of photon science at SLAC, Stanford University, and emeritus president's professor at Northern Illinois University (NIU) and distinguished scientist emeritus at Fermi National Accelerator Laboratory (Fermilab), where he was a member of the director's senior leadership team and was director of the Cooperative Research and Development Agreement between Fermilab and NIU. [2] [3]
Chattopadhyay is a Fellow of the American Physical Society, [4] American Association for the Advancement of Science, [5] Institute of Physics (UK), Royal Society of Arts, Manufactures and Commerce (UK) and Corresponding Fellow of the Royal Society of Edinburgh [6] and a member of many international panels and committees, including the "International Committee for Future Accelerators" and the DESY Science Council (2008–2013). [7] [8]
Swapan Chattopadhyay was born in Calcutta, India, and spent his early childhood years in the Himalayan hill town of Darjeeling. The Indo-China conflict over the disputed territory of Tibet led the family to relocated to the metropolitan mega-city of Calcutta in the early 1960s, where he received high school and university education. He was awarded a high school diploma in 1967 as a National Scholar, graduating from Ballygunge Government High School and was selected a National Science Talent Scholar in a nationwide competition. It was in this high school, that he was the beneficiary of the gifted mentorship of the school's physics teacher, Pramatha Nath Patra.
Chattopadhyay completed his B.Sc. degree from Calcutta University in 1970 in physics. He continued his studies at the Indian Institute of Technology at Kharagpur, for his post-graduate studies, completing his M.Sc. degree with specialization in Particle Physics in 1972.
Chattopadhyay then joined in 1972 the Physics department of the University of Oregon. However, over time, the draw towards the University of California at Berkeley got stronger and he joined the University of California at Berkeley in 1974, as a Ph.D. student in the Department of Physics. After flirting for two years (1974–1976) with the inimitable Berkeley brand of theoretical particle physics, then known as the "S-matrix" and "Bootstrap" theories of "strong interactions", under tutelage of Prof. Geoffrey Chew, Chattopadhyay was attracted away by accelerator physics dealing with charged particle and light beams. After having completed his PhD, he moved to CERN as an "attaché scientifique" in the Super Proton-Antiproton Synchrotron, contributing to program of stochastic cooling of antiproton beams. [9]
Chattopadhyay is noted for his pioneering contributions of innovative concepts, techniques and developments in high energy particle colliders, coherent and incoherent light sources, ultrafast sciences in the femto- and atto- second regimes, superconducting linear accelerators and various applications of interaction of particle and light beams. [10] [11] He has directly contributed to the development of many accelerators around the world, e.g. the Super Proton-Antiproton Synchrotron at CERN, [9] the Advanced Light Source at Berkeley, [12] the asymmetric-energy electron-positron collider PEP-II at Stanford, [13] the Continuous Electron Beam Accelerator facility (CEBAF) at Jefferson Lab and the Free-Electron Lasers at Jefferson and Daresbury Laboratories. [14]
He was formerly the Sir John Cockcroft Chair of Physics jointly at the Universities of Liverpool, Manchester and Lancaster—the First Chair of accelerator physics in UK, named after the British Nobel Laureate credited with creating the field. [15] [11] In this role he was the Inaugural Director of the Cockcroft Institute (UK), having been appointed in April 2007. Prior to this he served as associate director of Thomas Jefferson National Accelerator Facility (2001–2007), [16] staff/senior scientist and founding director of the Centre for Beam Physics at Lawrence Berkeley National Laboratory (1984–2001); and scientific attaché at CERN (1982–1984). [17]
After the period spent at CERN, Chattopadhyay returned to Lawrence Berkeley National Laboratory in 1984, where he led and defined the accelerator physics of the Advanced Light Source (ALS) [12] and contributed to the conceptual design of the Superconducting Super Collider (SSC), [18] pioneered the accelerator physics which underpinned the Berkeley-Stanford asymmetric B-factory (PEP-II) for CP-violation studies, and initiated the Berkeley FEL/Femtosecond X-ray Source and Laser-Plasma Acceleration development. He was a senior scientist, a guest professor, and the founder/director of the Center for Beam Physics at Berkeley, [19] until his move to Thomas Jefferson National Accelerator Facility in 2001 as the associate laboratory director for accelerators. At Thomas Jefferson National Accelerator Facility, he made critical advancements in microwave superconducting linear accelerators leading the way to current and future grand instruments of science such as the high precision CEBAF and its 12 GeV upgrade for precision research in hadronic physics, [20] Spallation Neutron Source at Oak Ridge National Laboratory, USA to advance neutron sciences and novel materials research, and the current superconducting version of the International Linear Collider, to name a few. His research at the Cockcroft Institute in UK included development of sources of "ultra-cold" relativistic free electron beams to advance coherent electron diffraction techniques; production of novel coherent and ultra-short pulses of photons (e.g. x-ray FELs); novel acceleration methods; investigation of photonic crystals and metamaterial structures for charged particle acceleration; novel high energy colliders.
While working for Fermilab and Northern Illinois University he contributed to cavity searches for dark matter; investigation of ultra-light dark matter and dark energy via atom interferometry, and the creation of the Matter-wave Atomic Gradiometer Interferometric Sensor (MAGIS-100) experiment. [21] [22] Having contributed to the conception, design, construction, commissioning and operation of numerous accelerators for particle and nuclear physics, photon and neutron sciences around the world, with significant research accomplishments in advanced particle and photon beam physics, [23] [24] and mentoring scientists around the world, in the developing nations in particular, in accelerator developments as a unifying global force among nations, Swapan Chattopadhyay is a frequently invited speaker and advisor at professional societies and government research agencies, serving on numerous editorial, advisory and review committees throughout the world.
He served as the Vice-Chair, Chair-elect, Chair and Past-Chair of the American Physical Society's Division of Physics of Beams (2007–2011). Chattopadhyay has delivered lectures throughout the world e.g. Saha Memorial Lecture, [25] Homi Bhabha Lecture, Raja Ramanna Memorial Lecture, and Cavendish Lecture among many.
Particle physics or high energy physics is the study of fundamental particles and forces that constitute matter and radiation. The fundamental particles in the universe are classified in the Standard Model as fermions and bosons. There are three generations of fermions, although ordinary matter is made only from the first fermion generation. The first generation consists of up and down quarks which form protons and neutrons, and electrons and electron neutrinos. The three fundamental interactions known to be mediated by bosons are electromagnetism, the weak interaction, and the strong interaction.
The European Organization for Nuclear Research, known as CERN, is an intergovernmental organization that operates the largest particle physics laboratory in the world. Established in 1954, it is based in a suburb of Geneva, on the France–Switzerland border. It comprises 23 member states. Israel, admitted in 2013, is the only non-European full member. CERN is an official United Nations General Assembly observer.
DESY, short for Deutsches Elektronen-Synchrotron, is a national research centre for fundamental science located in Hamburg and Zeuthen near Berlin in Germany. It operates particle accelerators used to investigate the structure, dynamics and function of matter, and conducts a broad spectrum of interdisciplinary scientific research in four main areas: particle and high energy physics; photon science; astroparticle physics; and the development, construction and operation of particle accelerators. Its name refers to its first project, an electron synchrotron. DESY is publicly financed by the Federal Republic of Germany and the Federal States of Hamburg and Brandenburg and is a member of the Helmholtz Association of German Research Centres.
Fermi National Accelerator Laboratory (Fermilab), located just outside Batavia, Illinois, near Chicago, is a United States Department of Energy national laboratory specializing in high-energy particle physics. Since 2007, Fermilab has been operated by the Fermi Research Alliance (FRA), a joint venture of the University of Chicago, and the Universities Research Association (URA); although in 2023, the Department of Energy (DOE) opened bidding for a new contractor due to concerns about the FRA performance. Fermilab is a part of the Illinois Technology and Research Corridor.
The Tevatron was a circular particle accelerator in the United States, at the Fermi National Accelerator Laboratory, east of Batavia, Illinois, and is the second highest energy particle collider ever built, after the Large Hadron Collider (LHC) of the European Organization for Nuclear Research (CERN) near Geneva, Switzerland. The Tevatron was a synchrotron that accelerated protons and antiprotons in a 6.28 km (3.90 mi) ring to energies of up to 1 TeV, hence its name. The Tevatron was completed in 1983 at a cost of $120 million and significant upgrade investments were made during its active years of 1983–2011.
A linear particle accelerator is a type of particle accelerator that accelerates charged subatomic particles or ions to a high speed by subjecting them to a series of oscillating electric potentials along a linear beamline. The principles for such machines were proposed by Gustav Ising in 1924, while the first machine that worked was constructed by Rolf Widerøe in 1928 at the RWTH Aachen University. Linacs have many applications: they generate X-rays and high energy electrons for medicinal purposes in radiation therapy, serve as particle injectors for higher-energy accelerators, and are used directly to achieve the highest kinetic energy for light particles for particle physics.
A collider is a type of particle accelerator that brings two opposing particle beams together such that the particles collide. Colliders may either be ring accelerators or linear accelerators.
A synchrotron is a particular type of cyclic particle accelerator, descended from the cyclotron, in which the accelerating particle beam travels around a fixed closed-loop path. The magnetic field which bends the particle beam into its closed path increases with time during the accelerating process, being synchronized to the increasing kinetic energy of the particles. The synchrotron is one of the first accelerator concepts to enable the construction of large-scale facilities, since bending, beam focusing and acceleration can be separated into different components. The most powerful modern particle accelerators use versions of the synchrotron design. The largest synchrotron-type accelerator, also the largest particle accelerator in the world, is the 27-kilometre-circumference (17 mi) Large Hadron Collider (LHC) near Geneva, Switzerland, built in 2008 by the European Organization for Nuclear Research (CERN). It can accelerate beams of protons to an energy of 6.5 tera electronvolts (TeV or 1012 eV).
The Underground Area 2 (UA2) experiment was a high-energy physics experiment at the Proton-Antiproton Collider — a modification of the Super Proton Synchrotron (SPS) — at CERN. The experiment ran from 1981 until 1990, and its main objective was to discover the W and Z bosons. UA2, together with the UA1 experiment, succeeded in discovering these particles in 1983, leading to the 1984 Nobel Prize in Physics being awarded to Carlo Rubbia and Simon van der Meer. The UA2 experiment also observed the first evidence for jet production in hadron collisions in 1981, and was involved in the searches of the top quark and of supersymmetric particles. Pierre Darriulat was the spokesperson of UA2 from 1981 to 1986, followed by Luigi Di Lella from 1986 to 1990.
The High Energy Accelerator Research Organization, known as KEK, is a Japanese organization whose purpose is to operate the largest particle physics laboratory in Japan, situated in Tsukuba, Ibaraki prefecture. It was established in 1997. The term "KEK" is also used to refer to the laboratory itself, which employs approximately 695 employees. KEK's main function is to provide the particle accelerators and other infrastructure needed for high-energy physics, material science, structural biology, radiation science, computing science, nuclear transmutation and so on. Numerous experiments have been constructed at KEK by the internal and international collaborations that have made use of them. Makoto Kobayashi, emeritus professor at KEK, is known globally for his work on CP-violation, and was awarded the 2008 Nobel Prize in Physics.
Thomas Jefferson National Accelerator Facility (TJNAF), commonly called Jefferson Lab or JLab, is a US National Laboratory located in Newport News, Virginia.
The Collider Detector at Fermilab (CDF) experimental collaboration studies high energy particle collisions from the Tevatron, the world's former highest-energy particle accelerator. The goal is to discover the identity and properties of the particles that make up the universe and to understand the forces and interactions between those particles.
The ISR was a particle accelerator at CERN. It was the world's first hadron collider, and ran from 1971 to 1984, with a maximum center of mass energy of 62 GeV. From its initial startup, the collider itself had the capability to produce particles like the J/ψ and the upsilon, as well as observable jet structure; however, the particle detector experiments were not configured to observe events with large momentum transverse to the beamline, leaving these discoveries to be made at other experiments in the mid-1970s. Nevertheless, the construction of the ISR involved many advances in accelerator physics, including the first use of stochastic cooling, and it held the record for luminosity at a hadron collider until surpassed by the Tevatron in 2004.
The DØ experiment was a worldwide collaboration of scientists conducting research on the fundamental nature of matter. DØ was one of two major experiments located at the Tevatron Collider at Fermilab in Batavia, Illinois. The Tevatron was the world's highest-energy accelerator from 1983 until 2009, when its energy was surpassed by the Large Hadron Collider. The DØ experiment stopped taking data in 2011, when the Tevatron shut down, but data analysis is still ongoing. The DØ detector is preserved in Fermilab's DØ Assembly Building as part of a historical exhibit for public tours.
Stochastic cooling is a form of particle beam cooling. It is used in some particle accelerators and storage rings to control the emittance of the particle beams in the machine. This process uses the electrical signals that the individual charged particles generate in a feedback loop to reduce the tendency of individual particles to move away from the other particles in the beam.
George Randolph Kalbfleisch was an American particle physicist.
A particle accelerator is a machine that uses electromagnetic fields to propel charged particles to very high speeds and energies, and to contain them in well-defined beams.
Vinod Chandrasinh Chohan was a Tanzanian-born accelerator specialist and engineer. He was a Senior Staff Member at CERN for nearly 40 years.
The Super Proton–Antiproton Synchrotron was a particle accelerator that operated at CERN from 1981 to 1991. To operate as a proton-antiproton collider the Super Proton Synchrotron (SPS) underwent substantial modifications, altering it from a one beam synchrotron to a two-beam collider. The main experiments at the accelerator were UA1 and UA2, where the W and Z bosons were discovered in 1983. Carlo Rubbia and Simon van der Meer received the 1984 Nobel Prize in Physics for their contributions to the SppS-project, which led to the discovery of the W and Z bosons. Other experiments conducted at the SppS were UA4, UA5 and UA8.
Bradley Cox is an American physicist, academic and researcher. He is a Professor of Physics and the founder of the High Energy Physics Group at the University of Virginia.
{{cite journal}}
: Cite journal requires |journal=
(help){{cite journal}}
: Cite journal requires |journal=
(help){{cite journal}}
: Cite journal requires |journal=
(help){{cite journal}}
: Cite journal requires |journal=
(help){{cite journal}}
: Cite journal requires |journal=
(help)