Switcher locomotive

Last updated

A switcher locomotive (American English), shunter locomotive (British English), or shifter locomotive (Pennsylvania Railroad terminology) is a locomotive used for maneuvering railway vehicles over short distances. Switchers do not usually move trains over long distances. Instead, they typically assemble trains in order for another locomotive to take over. Switchers often operate in a railyard or make short transfer runs. They may serve as the primary motive power on short branch lines or switching and terminal railroads. [1] [2] [3]

Contents

Switchers are optimized for their role, being relatively low-powered but with a high starting tractive effort for getting heavy cars rolling quickly. Switchers are geared to produce high torque but are restricted to low top speeds and have small diameter driving wheels. Switchers tend to be durable and to remain in service for a long time, [4] such as the Swedish class U.

American, Russian, Indian and Chinese switchers tend to be larger, with bogies to allow them to be used on tight radiuses. Western European shunters tend to be smaller and more often have fixed axles[ citation needed ]. They also often maintained coupling rods for longer than other locomotive types, although bogie types have long been used where very heavy loads are involved, such as at steelworks.

Etymology

A switcher may also be called a yard pilot, switch engine, or yard goat.

The term can also be used to describe the workers operating these engines or engaged in directing shunting operations. Switching locomotives may be purpose-built engines, but may also be downgraded main-line engines, or simply main-line engines assigned to switching. Switchers can also be used on short excursion train rides.

Power types

Diesel

A diesel switcher in Sakaki, Japan Shinano Railway Sakaki Station freight car switchingFreight train switching (46633855415).jpg
A diesel switcher in Sakaki, Japan

Diesel switchers tend to have a high cab and often lower and/or narrower hoods (bonnets) containing the diesel engines, for all round visibility. Slugs are often used because they allow even greater tractive effort to be applied. Nearly all slugs used for switching are of the low hood, cabless variety. Good visibility in both directions is critical, because a switcher may be running in either direction; turning the locomotive is time-consuming. Some earlier diesel switchers used cow-calf configurations of two powered units in order to provide greater power.

Modern diesel switchers are usually diesel-electric locomotives.

Electric

An electric switcher in Salzburg, Austria 1163003 at Salzburg Hauptbahnhof.jpg
An electric switcher in Salzburg, Austria

The majority of modern switchers are diesels, but countries with near-total electrification, like Switzerland, use electric switchers. Prior to the introduction of diesel-electric locomotives, electric shunting locomotives were used to an extent in Great Britain where heavy trains needed to be started on steep gradients. The steeply-graded Quayside Branch in Newcastle upon Tyne was electrified by the North Eastern Railway in 1905, and two steeplecab locomotives were built to handle all traffic on the line. One of these, No. 1, is now part of the National Collection and resides at Locomotion in Shildon. On the opposite side of the Tyne, the electrified lines owned by the Harton Coal Company in South Shields for the movement of coal and colliery waste to shipping facilities on the river was one of the more extensive industrial networks. A number of the early German locomotives built for use on these lines have been preserved.

Electric locomotives were also extensively employed for moving the coke cars at cokeworks, obtaining power from a side wire, as third rail or overhead line electrification would have been impractical. These specialised locomotives were tall steeple-cab types not seen anywhere else, and operated on a short length of track between the ovens and the quenching tower. Despite their ubiquity, very few have survived into preservation as there is very little scope of operating them due to their unique means of obtaining power, slow speed and the fact they greatly exceed the loading gauge of most railway lines. One example built by Greenwood and Batley in Armley, Leeds is preserved at the Middleton Railway, not far from where it was built.

Small industrial shunters are sometimes battery powered type. An early battery-powered shunting locomotive is shown here. [5] The Tyne and Wear Metro has three battery electric shunters built by Hunslet, which are used to haul engineering trains when the overhead supply is switched off. New Zealand Railways imported and manufactured locally battery-electric shunters in the 1920s: the EB class and the E class (1922)

Electro-diesel

A small electro-diesel switcher in Pfaffikon, Switzerland Tem 346.jpg
A small electro-diesel switcher in Pfäffikon, Switzerland

Some switchers are electro-diesel, and hence can be powered from onboard diesel engines, or from an external electricity supply.

Steam

A typical British steam shunter, a GNR Class J13 National Railway Museum (8711).jpg
A typical British steam shunter, a GNR Class J13

Steam shunter/switchers are now mostly out of service. Steam switchers were either tank locomotives or had special (smaller) tenders, with narrow coal bunkers and/or sloped tender decks to increase rearward visibility. Headlights, where carried, were mounted on both ends. Most were either side-tank or saddle-tank types, however in the usual departure from its neighbours' practice, the Great Western Railway used pannier tanks for shunting and branch line work, a practice which the Western Region of BR perpetuated until steam traction was phased out, with several examples joining a 9F as banking engines to assist locomotives on the notoriously arduous ascent of the Lickey Incline, replacing the LMS "Jinties" which had formerly carried out the task alongside "Big Bertha".

As diesel shunters began to appear in ever-increasing numbers, attempts were made by companies such as Sentinel to adapt the vertical boilers from their steam powered road vehicles for use in shunting locomotives, in order to compete with the newcomers. Although these were found to be equal in power and efficiency to most of the early diesel designs, their development came too late to have any real impact. Outwardly, they bear more resemblance to diesels than steam locomotives. A number have been preserved on heritage railways, although few of these are in working order, being designed very specifically for shunting work and lacking the necessary speed to travel any kind of distance.

Small industrial shunters have sometimes been fireless locomotives and a few of these are still at work in Germany. Again, several have been preserved, but are mostly static displays, as heritage railways and museums lack the large source of high-pressure steam (such as a power station's boilers) needed to charge the locomotive's accumulator.

By region

United States

A modern NRE Genset switcher on the American San Diego and Imperial Valley Railroad San Diego Imperial Valley switcher 702 (cropped).jpg
A modern NRE Genset switcher on the American San Diego and Imperial Valley Railroad

American switchers tend to be larger, and are almost always powered by diesel.

Most American switchers are actually road switchers, which are larger and have greater power output, to be used on mainlines.

Great Britain

The British Rail Class 08 is a widely used shunter in Great Britain Old Oak Common - GWR 08836 running up through the yard.JPG
The British Rail Class 08 is a widely used shunter in Great Britain

British shunters are much smaller than those used in the United States. Current British shunters are 0-6-0 diesel-electrics, Class 08 and Class 09, of 350-400 horsepower. These were developed from similar locomotives supplied by the English Electric Company to the Big Four British railway companies in the 1930s and 1940s, e.g. those pioneered by the LMS. Similar locomotives were exported to the Netherlands (e.g. NS Class 600) and Australia (e.g. Victorian Railways F class (diesel)). The use of shunting locomotives saw a sharp decline in Britain in the latter half of the 20th century, largely due to the contraction of the network, increased competition from road traffic and widespread adoption of train-load freight, with fixed rakes of wagons moving mainly bulk products between rapid-loading facilities, as opposed to thousands of sidings and goods depots feeding trains of assorted wagons into the marshalling yards.

Continental Europe

A TCDD DH33100 shunter in Istanbul, Turkey TCDD DH33121.jpg
A TCDD DH33100 shunter in Istanbul, Turkey

In continental Europe 0-6-0 (or "C") diesel-hydraulics, similar to the short-lived British Rail Class 14, are widely used. A very common type is the DB Class V 60 and its variants. For lightweight shunting of single wagons or short trains, two-axle shunters are common; in Germany these are known as Kleinlokomotive (small locomotive).

See also

Related Research Articles

<span class="mw-page-title-main">Locomotive</span> Self-propelled railway vehicle

A locomotive or engine is a rail transport vehicle that provides the motive power for a train. If a locomotive is capable of carrying a payload, it is usually rather referred to as a multiple unit, motor coach, railcar or power car; the use of these self-propelled vehicles is increasingly common for passenger trains, but rare for freight trains.

<span class="mw-page-title-main">Diesel locomotive</span> Locomotive powered by a diesel engine

A diesel locomotive is a type of railway locomotive in which the power source is a diesel engine. Several types of diesel locomotives have been developed, differing mainly in the means by which mechanical power is conveyed to the driving wheels. The most common are diesel-electric locomotives and diesel-hydraulic.

<span class="mw-page-title-main">Electric locomotive</span> Locomotive powered by electricity

An electric locomotive is a locomotive powered by electricity from overhead lines, a third rail or on-board energy storage such as a battery or a supercapacitor. Locomotives with on-board fuelled prime movers, such as diesel engines or gas turbines, are classed as diesel–electric or gas turbine–electric and not as electric locomotives, because the electric generator/motor combination serves only as a power transmission system.

<span class="mw-page-title-main">0-4-0</span> Locomotive wheel arrangement

Under the Whyte notation for the classification of steam locomotives, 0-4-0 represents one of the simplest possible types, that with two axles and four coupled wheels, all of which are driven. The wheels on the earliest four-coupled locomotives were connected by a single gear wheel, but from 1825 the wheels were usually connected with coupling rods to form a single driven set.

<span class="mw-page-title-main">0-6-0</span> Locomotive wheel arrangement

0-6-0 is the Whyte notation designation for steam locomotives with a wheel arrangement of no leading wheels, six powered and coupled driving wheels on three axles, and no trailing wheels. Historically, this was the most common wheel arrangement used on both tender and tank locomotives in versions with both inside and outside cylinders.

<span class="mw-page-title-main">British Rail Class 05</span> Class of 69 204hp diesel-mechanical shunting locomotives

The British Rail Class 05 is a class of 0-6-0 diesel-mechanical shunters built by Hunslet Engine Company from 1955 to 1961. They were used on the Eastern and Scottish Regions of British Railways. The first two batches were delivered as 11136-11143 and 11161-11176. Subsequent locomotives were delivered, new, as D2574-D2618.

<span class="mw-page-title-main">British Rail Class 07</span>

The British Rail Class 07 diesel locomotive is an off-centre cab 0-6-0 diesel-electric shunter type built by Ruston & Hornsby in 1962 for the Southern Region of British Railways. The 14 members of the class were primarily used at Southampton Docks and later also at Eastleigh Works.

<span class="mw-page-title-main">North Tyneside Steam Railway</span> Visitor attraction in North East England

The North Tyneside Steam Railway and Stephenson Steam Railway are visitor attractions in North Shields, North East England. The museum and railway workshops share a building on Middle Engine Lane adjacent to the Silverlink Retail Park. The railway is a standard gauge line, running south for 2 miles (3.2 km) from the museum to Percy Main. The railway is operated by the North Tyneside Steam Railway Association (NTSRA). The museum is managed by Tyne and Wear Archives and Museums on behalf of North Tyneside Council.

<span class="mw-page-title-main">British Rail Class D3/7</span>

The British Railways Class D3/7 is a class of 0-6-0 diesel electric shunting locomotives built as LMS Nos. 7080–7119. The class were built from May 1939 through to July 1942 by the London, Midland and Scottish Railway at their Derby Works using a diesel electric transmission supplied by English Electric.

Under the Whyte notation for the classification of steam locomotives, 0-8-0 represents the wheel arrangement of no leading wheels, eight powered and coupled driving wheels on four axles and no trailing wheels. Locomotives of this type are also referred to as eight coupled.

<span class="mw-page-title-main">Road switcher locomotive</span> Type of railroad locomotive

A road switcher locomotive is a type of railroad locomotive designed to both haul railcars in mainline service and shunt them in railroad yards. Both type and term are North American in origin, although similar types have been used elsewhere.

<span class="mw-page-title-main">Head-end power</span> Electric power supply to trains by locomotives

In rail transport, head-end power (HEP), also known as electric train supply (ETS), is the electrical power distribution system on a passenger train. The power source, usually a locomotive at the front or 'head' of a train, provides the electricity used for heating, lighting, electrical and other 'hotel' needs. The maritime equivalent is hotel electric power. A successful attempt by the London, Brighton and South Coast Railway in October 1881 to light the passenger cars on the London to Brighton route heralded the beginning of using electricity to light trains in the world.

<span class="mw-page-title-main">Electro-diesel locomotive</span> Railway locomotive capable of running either under electrical or diesel power

An electro-diesel locomotive is a type of locomotive that can be powered either from an electricity supply or by using the onboard diesel engine. For the most part, these locomotives are built to serve regional, niche markets with a very specific purpose.

<span class="mw-page-title-main">Alstom Prima</span> Diesel and electric locomotive family

Prima is a family of railway diesel and electric locomotives built by Alstom. Manufacture of the type commenced in the late 1990s. By 2008, Alstom had reportedly sold 1,750 Prima locomotives. The second generation Prima II was launched in 2009. The Prima H3 diesel/battery hybrid locomotive was launched in 2013.

Indian Railways operates India's railway system and comes under the purview of the Ministry of Railways of Government of India. As of 2023, it maintains over 108,706 km (67,547 mi) of tracks and operates over 13,000 trains daily with a fleet of 14,800 locomotives. The railways primarily operates a fleet of electric and diesel locomotives along with a few compressed natural gas (CNG) locomotives. Steam locomotives are operated on mountain railways and on heritage trains.

<span class="mw-page-title-main">Dieselisation</span> Conversion to diesel fuel in vehicles, especially locomotives

Dieselisation is the process of equipping vehicles with a diesel engine or diesel engines.

<span class="mw-page-title-main">LB&SCR E2 class</span> Steam locomotive class

The London, Brighton and South Coast Railway (LB&SCR) E2 class was a class of 0-6-0T steam locomotives designed by Lawson Billinton, intended for shunting and short distance freight trains. Ten examples were built between 1913 and 1916, and were withdrawn from service and scrapped between 1961 and 1963.

<span class="mw-page-title-main">Gateshead TMD</span> Locomotive maintenance yard in the North of England

Gateshead TMD was a railway traction maintenance depot situated in Gateshead, England. The depot code was 52A during the steam era and GD later on.

Railway electric traction describes the various types of locomotive and multiple units that are used on electrification systems around the world.

<span class="mw-page-title-main">Kleinlokomotive</span> German locomotive

A Kleinlokomotive or Kleinlok is a German locomotive of small size and low power for light shunting duties at railway stations and on industrial railways. Most are powered by diesel engines, but Kleinloks with steam, petrol, or electric engines were also produced.

References

  1. Burns, Adam (29 December 2022). "Switcher Locomotives: An Overview". US. Retrieved 2 February 2023.
  2. "New California Locomotives Designed to Reduce Emissions". UP. Retrieved 13 February 2023.
  3. "Cummins Develops Option to Help Switcher Locomotives Reduce Emissions". Finance.yahoo.com. 2 December 2021. Retrieved 13 February 2023.
  4. Solomon, Brian (2014). GE and EMD Locomotives. Voyageur Press. p. 56. ISBN   9781627883979.
  5. "Electric locomotive, 1917". Ingenious. UK. Archived from the original on 28 March 2016. Retrieved 14 May 2016.

Further reading