T2 Energy Centre

Last updated

The T2 Energy Centre is a biomass-fuelled combined heating and power (CHP) station at Heathrow Airport in London which opened in December 2012. [1] It provides heat to half of the active terminals: Terminal 2 and Terminal 5 and electricity into the local grid, similar to some of the airport's operations demands.

Contents

Operation

The energy centre, which has a CHP base heating load of 9  MW (thermal) and a biomass CHP power output of 1.8 MW (electric), [2] took its first delivery of woodchip fuel in November 2012. [2]

The Energy Centre uses 25,000 tonnes of woodchips a year, which is sourced within a 100-mile radius of Heathrow airport from sustainable woodlands such as the WWT London Wetland Centre in Barnes, London and Richmond Park [3] which ensures low haulage requirements, costs and CO2 emissions. [4] The resulting ash is recycled and used to make fertiliser for local agriculture and manufacturing, eliminating the need to send the ash to landfill. Heathrow claims that the wood fuel process will enable it to save at least 13,000 tonnes of CO2 emissions per year, compared with producing the same output from natural gas, and to reduce its carbon footprint by 34 per cent by 2020. [5] The electricity generated is fed into the local grid.

Award

In September 2012, the Chartered Institute of Purchasing & Supply awarded Heathrow Airport Limited for 'Best Contribution to Corporate Responsibility' with regard to the energy plant. [6]

Related Research Articles

<span class="mw-page-title-main">Gasification</span> Form of energy conversion

Gasification is a process that converts biomass- or fossil fuel-based carbonaceous materials into gases, including as the largest fractions: nitrogen (N2), carbon monoxide (CO), hydrogen (H2), and carbon dioxide (CO2). This is achieved by reacting the feedstock material at high temperatures (typically >700 °C), without combustion, via controlling the amount of oxygen and/or steam present in the reaction. The resulting gas mixture is called syngas (from synthesis gas) or producer gas and is itself a fuel due to the flammability of the H2 and CO of which the gas is largely composed. Power can be derived from the subsequent combustion of the resultant gas, and is considered to be a source of renewable energy if the gasified compounds were obtained from biomass feedstock.

<span class="mw-page-title-main">Drax Power Station</span> Biomass power station in North Yorkshire

Drax power station is a large biomass power station in Drax, North Yorkshire, England, capable of co-firing petroleum coke. It has a 2.6 GW capacity for biomass and 1.29 GW capacity for coal. Its name comes from the nearby village of Drax. It is situated on the River Ouse between Selby and Goole. Its generating capacity of 3,906 megawatts (MW) is the highest of any power station in the United Kingdom, providing about 6% of the United Kingdom's electricity supply.

<span class="mw-page-title-main">Wood fuel</span> Wood used as fuel for combustion

Wood fuel is a fuel such as firewood, charcoal, chips, sheets, pellets, and sawdust. The particular form used depends upon factors such as source, quantity, quality and application. In many areas, wood is the most easily available form of fuel, requiring no tools in the case of picking up dead wood, or few tools, although as in any industry, specialized tools, such as skidders and hydraulic wood splitters, have been developed to mechanize production. Sawmill waste and construction industry by-products also include various forms of lumber tailings.

<span class="mw-page-title-main">District heating</span> Centralized heat distribution system

District heating is a system for distributing heat generated in a centralized location through a system of insulated pipes for residential and commercial heating requirements such as space heating and water heating. The heat is often obtained from a cogeneration plant burning fossil fuels or biomass, but heat-only boiler stations, geothermal heating, heat pumps and central solar heating are also used, as well as heat waste from factories and nuclear power electricity generation. District heating plants can provide higher efficiencies and better pollution control than localized boilers. According to some research, district heating with combined heat and power (CHPDH) is the cheapest method of cutting carbon emissions, and has one of the lowest carbon footprints of all fossil generation plants.

<span class="mw-page-title-main">Bioenergy</span> Energy made from recently-living organisms

Bioenergy is energy made or generated from biomass, which consists of recently living organisms, mainly plants. Types of biomass commonly used for bioenergy include wood, food crops such as corn, energy crops and waste from forests, yards, or farms. The IPCC defines bioenergy as a renewable form of energy. Bioenergy can either mitigate or increase greenhouse gas emissions. There is also agreement that local environmental impacts can be problematic.

<span class="mw-page-title-main">Pellet fuel</span> Solid fuel made from compressed organic material

Pellet fuels are a type of solid fuel made from compressed organic material. Pellets can be made from any one of five general categories of biomass: industrial waste and co-products, food waste, agricultural residues, energy crops, and untreated lumber. Wood pellets are the most common type of pellet fuel and are generally made from compacted sawdust and related industrial wastes from the milling of lumber, manufacture of wood products and furniture, and construction. Other industrial waste sources include empty fruit bunches, palm kernel shells, coconut shells, and tree tops and branches discarded during logging operations. So-called "black pellets" are made of biomass, refined to resemble hard coal and were developed to be used in existing coal-fired power plants. Pellets are categorized by their heating value, moisture and ash content, and dimensions. They can be used as fuels for power generation, commercial or residential heating, and cooking.

<span class="mw-page-title-main">Waste-to-energy</span> Process of generating energy from the primary treatment of waste

Waste-to-energy (WtE) or energy-from-waste (EfW) is the process of generating energy in the form of electricity and/or heat from the primary treatment of waste, or the processing of waste into a fuel source. WtE is a form of energy recovery. Most WtE processes generate electricity and/or heat directly through combustion, or produce a combustible fuel commodity, such as methane, methanol, ethanol or synthetic fuels, often derived from the product syngas.

<span class="mw-page-title-main">Energy in Denmark</span> Energy and electricity production, consumption, import and export in Denmark

Denmark has considerable sources of oil and natural gas in the North Sea and ranked as number 32 in the world among net exporters of crude oil in 2008. Denmark expects to be self-sufficient with oil until 2050. However, gas resources are expected to decline, and production may decline below consumption in 2020, making imports necessary. Denmark imports around 12% of its energy.

<span class="mw-page-title-main">Renewable energy in Finland</span> Overview of renewable energy in Finland

Renewable energy in Finland grew to 38.7% of total final energy consumption by year end 2014, achieving joint second position with Latvia in terms of renewable energy consumption by share amongst the EU-28 countries, behind its neighbour Sweden in first position on a 52.6% share. The 2014 share in Finland breaks down as renewable energy providing 52% of the heating and cooling sector, 31.4% of the electricity sector and 21.6% of the transport sector. By 2014, Finland had already exceeded its 2020 target for renewable energy use under the EU renewable energy directive as shown in the table of country targets.

<span class="mw-page-title-main">Woodchips</span> Small pieces of wood made when shredding larger pieces of wood

Woodchips are small- to medium-sized pieces of wood formed by cutting or chipping larger pieces of wood such as trees, branches, logging residues, stumps, roots, and wood waste.

<span class="mw-page-title-main">Energy in Finland</span> Overview of the production, consumption, import and export of energy and electricity in Finland

Energy in Finland describes energy and electricity production, consumption and import in Finland. Energy policy of Finland describes the politics of Finland related to energy. Electricity sector in Finland is the main article regarding electricity in Finland.

<span class="mw-page-title-main">Energy in Belgium</span>

Energy in Belgium describes energy and electricity production, consumption and import in Belgium.

<span class="mw-page-title-main">Heathrow Terminal 2</span> Airport terminal at London Heathrow Airport

Heathrow Terminal 2, also known as The Queen's Terminal, is an airport terminal at Heathrow Airport, the main airport serving London, United Kingdom. The new development was originally named Heathrow East Terminal, and occupies the sites where the previous Terminal 2 and the Queens Building stood. It was designed by Luis Vidal + Architects and opened on 4 June 2014. The original Terminal 2 opened in 1955 as the Europa Building and was the airport's oldest terminal.

<span class="mw-page-title-main">Avedøre Power Station</span>

The Avedøre Power Station is a combined heat and power station, located in Avedøre, Denmark, just south of Copenhagen, and is owned by Ørsted A/S. Avedøre Power Plant is a high-technology facility and one of the world's most efficient of its kind, being able to utilize as much as 94% of the energy in the fuel and convert 49% of the fuel energy into electricity. Apart from using petroleum (oil) and natural gas, the plant runs on a wide variety of biomass fuels such as straw and wood pellets. The plant consists of two units with a total capacity of 793 MW of electricity and 918 MW of heat. The combination of producing electricity and heat for district heating at the same time is widely used in Denmark and the rest of Scandinavia, due to the need of domestic heating together with the Danish energy companies putting a big effort into optimising the energy plants.

<span class="mw-page-title-main">Energy in Portugal</span> Energy and electricity production in Portugal

Energy in Portugal describes energy and electricity production, consumption and import in Portugal. Energy policy of Portugal will describe the politics of Portugal related to energy more in detail. Electricity sector in Portugal is the main article of electricity in Portugal.

<span class="mw-page-title-main">Energy in Ireland</span> Overview of energy in Ireland

Ireland is a net energy importer. Ireland's import dependency decreased to 85% in 2014. The cost of all energy imports to Ireland was approximately €5.7 billion, down from €6.5 billion (revised) in 2013 due mainly to falling oil and, to a lesser extent, gas import prices. Consumption of all fuels fell in 2014 with the exception of peat, renewables and non-renewable wastes.

<span class="mw-page-title-main">Renewable energy in New Zealand</span>

Approximately 40% of primary energy is from renewable energy sources in New Zealand. Approximately 80% of electricity comes from renewable energy, primarily hydropower and geothermal power.

<span class="mw-page-title-main">UBC Biomass Research and Demonstration Facility</span>

The Biomass Research and Demonstration Facility uses biomass to create clean heat and energy. This facility is located at 2329 West Mall in Vancouver at the University of British Columbia's West Point Grey Campus. Official operation began in September 2012, by combining syngas and gasification conditioning systems with a Jenbacher engine. The highest potential output of this system is 2 MWe (megawatts) of electricity and 9600 lbs of steam per hour. This system is the first of its type in all of Canada, and it was put together by the cooperation of three parties: General Electric (GE), Nexterra, and the University of British Columbia (UBC).

Denmark is a leading country in renewable energy production and usage. Renewable energy sources collectively produced 75% of Denmark's electricity generation in 2022, and are expected to provide 100% of national electric power production from 2030. Including energy use in the heating/cooling and transport sectors, Denmark is expected to reach 100% renewable energy in 2050, up from the 34% recorded in 2021.

Biofuels play a major part in the renewable energy strategy of Denmark. Denmark is using biofuel to achieve its target of using 100% renewable energy for all energy uses by 2050. Biofuels provide a large share of energy sources in Denmark when considering all sectors of energy demand. In conjunction with Denmark's highly developed renewable energy resources in other areas, biofuels are helping Denmark meet its ambitious renewable energy targets.

References

  1. "Heathrow's T2 new Energy Centre that opened December 2012" (Press release). LC Energy. 2013. Archived from the original on 12 December 2013.
  2. 1 2 "Creating Renewable Heat and Energy for Terminal 2" (Press release). Morgansindall.com. 2013. Archived from the original on 28 July 2013.
  3. "Heathrow Terminal 2 to be powered by woodchip biomass – with dubious and extravagant "green" claims" (Press release). Airport Watch. 2014.
  4. "LC Energy wins 15 year woodchip contract at London Heathrow Airport" (Press release). LC Energy. 10 January 2011. Archived from the original on 18 October 2013.
  5. "Heathrow's ground-breaking sustainable energy centre recognised in awards" (Press release). Heathrow Airport Limited. 28 September 2012. Archived from the original on 18 November 2012. Retrieved 20 December 2012.
  6. ADS Advance (2 October 2012). "Heathrow's T2 energy centre wins CIPS award" (Press release). ADS Advance. Retrieved 30 January 2013.

51°27′34″N0°27′34″W / 51.459423°N 0.459365°W / 51.459423; -0.459365