TBRG4

Last updated
TBRG4
Identifiers
Aliases TBRG4 , CPR2, FASTKD4, transforming growth factor beta regulator 4
External IDs OMIM: 611325 MGI: 1100868 HomoloGene: 31259 GeneCards: TBRG4
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_199122
NM_001261834
NM_004749
NM_030900

RefSeq (protein)

NP_001248763
NP_004740
NP_112162
NP_954573

Location (UCSC) Chr 7: 45.1 – 45.11 Mb Chr 11: 6.57 – 6.58 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Transforming growth factor beta regulator 4 (TBRG4), also known as cell cycle progression restoration protein 2 (CPR2) and FAST kinase domain-containing protein 4 (FASTKD4), is a protein that in humans is encoded by the TBRG4 gene on chromosome 7. [5] [6] [7] This protein is part of the FASTKD family, which is known for regulating the energy balance of mitochondria under stress and cell cycle progression. [8] [9] TBRG4 is involved in cell proliferation in hematopoiesis and multiple myeloma. [10] [11]

Contents

Structure

TBRG4 shares structural characteristics of the FASTKD family, including an N-terminal mitochondrial targeting domain and three C-terminal domains: two FAST kinase-like domains (FAST_1 and FAST_2) and a RNA-binding domain (RAP). [8] [9] The mitochondrial targeting domain directs TBRG4 to be imported into the mitochondria. Though the functions of the C-terminal domains are unknown, RAP possibly binds RNA during trans-splicing. [8] TBRG4 also contains multiple putative leucine zipper domains. [6]

Function

As a member of the FASTKD family, TBRG4 localizes to the mitochondria to modulate their energy balance, especially under conditions of stress. Though ubiquitously expressed in all tissues, TBRG4 appears more abundantly in skeletal muscle, heart muscle, and other tissues enriched in mitochondria. [8] TBRG4 also localizes to the bone marrow (BM), where it functions in hematopoiesis by inducing IL-6 and VEGF secretion, which then stimulate cell proliferation and angiogenesis. However, it inhibits immunoglobulin secretions by normal B cells. [10]

Clinical significance

The involvement of TBRG4 in hematopoiesis links it to multiple myeloma (MM), which stems from malignant proliferation of plasma cells in the bone marrow. [10] High expression of TBRG4 has been linked to enhanced cell proliferation and poorer outcome; thus, downregulation of its expression may contribute to reducing tumor growth by arresting cell cycle progression. [11]

Related Research Articles

<span class="mw-page-title-main">MYBL2</span> Protein-coding gene in the species Homo sapiens

Myb-related protein B is a protein that in humans is encoded by the MYBL2 gene.

<span class="mw-page-title-main">ARAF</span> Protein-coding gene in the species Homo sapiens

Serine/threonine-protein kinase A-Raf or simply A-Raf is an enzyme that in humans is encoded by the ARAF gene. A-Raf is a member of the Raf kinase family of serine/threonine-specific protein kinases.

<span class="mw-page-title-main">DNAJA3</span> Protein-coding gene in the species Homo sapiens

DnaJ homolog subfamily A member 3, mitochondrial, also known as Tumorous imaginal disc 1 (TID1), is a protein that in humans is encoded by the DNAJA3 gene on chromosome 16. This protein belongs to the DNAJ/Hsp40 protein family, which is known for binding and activating Hsp70 chaperone proteins to perform protein folding, degradation, and complex assembly. As a mitochondrial protein, it is involved in maintaining membrane potential and mitochondrial DNA (mtDNA) integrity, as well as cellular processes such as cell movement, growth, and death. Furthermore, it is associated with a broad range of diseases, including neurodegenerative diseases, inflammatory diseases, and cancers.

<span class="mw-page-title-main">ABL2</span> Protein-coding gene in the species Homo sapiens

Tyrosine-protein kinase ABL2 also known as Abelson-related gene (Arg) is an enzyme that in humans is encoded by the ABL2 gene.

<span class="mw-page-title-main">DLC1</span> Protein-coding gene in the species Homo sapiens

Deleted in Liver Cancer 1 also known as DLC1 and StAR-related lipid transfer protein 12 (STARD12) is a protein which in humans is encoded by the DLC1 gene.

<span class="mw-page-title-main">PRDX3</span> Protein-coding gene in the species Homo sapiens

Thioredoxin-dependent peroxide reductase, mitochondrial is an enzyme that in humans is encoded by the PRDX3 gene. It is a member of the peroxiredoxin family of antioxidant enzymes.

<span class="mw-page-title-main">DGUOK</span> Protein-coding gene in the species Homo sapiens

Deoxyguanosine kinase, mitochondrial is an enzyme that in humans is encoded by the DGUOK gene.

<span class="mw-page-title-main">Mitochondrial antiviral-signaling protein</span> Protein-coding gene in the species Homo sapiens

Mitochondrial antiviral-signaling protein (MAVS) is a protein that is essential for antiviral innate immunity. MAVS is located in the outer membrane of the mitochondria, peroxisomes, and mitochondrial-associated endoplasmic reticulum membrane (MAM). Upon viral infection, a group of cytosolic proteins will detect the presence of the virus and bind to MAVS, thereby activating MAVS. The activation of MAVS leads the virally infected cell to secrete cytokines. This induces an immune response which kills the host's virally infected cells, resulting in clearance of the virus.

<span class="mw-page-title-main">TTK (gene)</span> Protein-coding gene in the species Homo sapiens

Dual specificity protein kinase TTK also known as Mps1 is an enzyme that in humans is encoded by the TTK gene.

<span class="mw-page-title-main">MYT1</span> Protein-coding gene in the species Homo sapiens

Myelin transcription factor 1 is a protein that in humans is encoded by the MYT1 gene.

<span class="mw-page-title-main">NUAK1</span> Protein-coding gene in the species Homo sapiens

NUAK family SNF1-like kinase 1 also known as AMPK-related protein kinase 5 (ARK5) is an enzyme that in humans is encoded by the NUAK1 gene.

<span class="mw-page-title-main">AGK (gene)</span> Protein-coding gene in the species Homo sapiens

The human gene AGK encodes the enzyme mitochondrial acylglycerol kinase.

<span class="mw-page-title-main">HK2</span>

Hexokinase 2 also known as HK2 is an enzyme which in humans is encoded by the HK2 gene on chromosome 2. Hexokinases phosphorylate glucose to produce glucose-6-phosphate (G6P), the first step in most glucose metabolism pathways. This gene encodes hexokinase 2, the predominant form found in skeletal muscle. It localizes to the outer membrane of mitochondria. Expression of this gene is insulin-responsive, and studies in rat suggest that it is involved in the increased rate of glycolysis seen in rapidly growing cancer cells. [provided by RefSeq, Apr 2009]

<span class="mw-page-title-main">LIG3</span> Protein-coding gene in the species Homo sapiens

DNA ligase 3 is an enzyme that, in humans, is encoded by the LIG3 gene. The human LIG3 gene encodes ATP-dependent DNA ligases that seal interruptions in the phosphodiester backbone of duplex DNA.

<span class="mw-page-title-main">FASTKD3</span> Protein-coding gene in the species Homo sapiens

FAST kinase domain-containing protein 3 (FASTKD3) is a protein that in humans is encoded by the FASTKD3 gene on chromosome 5. This protein is part of the Fas-activated serine/threonine kinase domain (FASTKD) containing protein family, which is known for regulating the energy balance of mitochondria under stress.

<span class="mw-page-title-main">ADP/ATP translocase 2</span> Protein-coding gene in the species Homo sapiens

ADP/ATP translocase 2 is a protein that in humans is encoded by the SLC25A5 gene on the X chromosome.

<span class="mw-page-title-main">FASTKD1</span> Protein-coding gene in the species Homo sapiens

FAST kinase domain-containing protein 1 is a protein that in humans is encoded by the FASTKD1 gene on chromosome 2. This protein is part of the FASTKD family, which is known for regulating the energy balance of mitochondria under stress. FASTKD1 is also an RNA-binding protein and has been associated with endometrial cancer.

<span class="mw-page-title-main">FASTKD2</span> Protein-coding gene in the species Homo sapiens

FAST kinase domain-containing protein 2 (FASTKD2) is a protein that in humans is encoded by the FASTKD2 gene on chromosome 2. This protein is part of the FASTKD family, which is known for regulating the energy balance of mitochondria under stress. FASTKD2 has been implicated in mitochondrial encephalomyopathy, breast cancer, and prostate cancer.

<span class="mw-page-title-main">FASTKD5</span> Protein-coding gene in the species Homo sapiens

FAST kinase domain-containing protein 5 (FASTKD5) is a protein that in humans is encoded by the FASTKD5 gene on chromosome 20. This protein is part of the FASTKD family, which is known for regulating the energy balance of mitochondria under stress. FASTKD5 is also required for RNA granules to process precursor mRNAs not flanked by tRNAs.

<span class="mw-page-title-main">RMDN3</span> Protein-coding gene in the species Homo sapiens

Regulator of microtubule dynamics protein 3 (RMDN3), more commonly known as Protein tyrosine phosphatase interacting protein 51 (PTPIP51), is a protein that in humans is encoded by the RMDN3 gene on chromosome 15. This protein contributes to multiple biological functions, including cellular differentiation, proliferation, motility, cytoskeleton formation, and apoptosis, and has been associated with numerous cancers.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000136270 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000000384 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. UniProt: Q969Z0
  6. 1 2 Edwards MC, Liegeois N, Horecka J, DePinho RA, Sprague GF, Tyers M, Elledge SJ (Nov 1997). "Human CPR (cell cycle progression restoration) genes impart a Far- phenotype on yeast cells". Genetics. 147 (3): 1063–76. doi:10.1093/genetics/147.3.1063. PMC   1208234 . PMID   9383053.
  7. "Entrez Gene: TBRG4 transforming growth factor beta regulator 4".
  8. 1 2 3 4 Simarro M, Gimenez-Cassina A, Kedersha N, Lazaro JB, Adelmant GO, Marto JA, Rhee K, Tisdale S, Danial N, Benarafa C, Orduña A, Anderson P (Oct 2010). "Fast kinase domain-containing protein 3 is a mitochondrial protein essential for cellular respiration". Biochemical and Biophysical Research Communications. 401 (3): 440–6. doi:10.1016/j.bbrc.2010.09.075. PMC   2963690 . PMID   20869947.
  9. 1 2 Yeung KT, Das S, Zhang J, Lomniczi A, Ojeda SR, Xu CF, Neubert TA, Samuels HH (Jun 2011). "A novel transcription complex that selectively modulates apoptosis of breast cancer cells through regulation of FASTKD2". Molecular and Cellular Biology. 31 (11): 2287–98. doi:10.1128/MCB.01381-10. PMC   3133243 . PMID   21444724.
  10. 1 2 3 Sevcikova S, Paszekova H, Besse L, Sedlarikova L, Kubaczkova V, Almasi M, Pour L, Hajek R (Apr 2015). "Extramedullary relapse of multiple myeloma defined as the highest risk group based on deregulated gene expression data" (PDF). Biomedical Papers of the Medical Faculty of the University Palacký, Olomouc, Czechoslovakia. 159 (2): 288–93. doi: 10.5507/bp.2015.014 . PMID   25877407.
  11. 1 2 Sarasquete ME, Martínez-López J, Chillón MC, Alcoceba M, Corchete LA, Paiva B, Puig N, Sebastián E, Jiménez C, Mateos MV, Oriol A, Rosiñol L, Palomera L, Teruel AI, González Y, Lahuerta JJ, Bladé J, Gutiérrez NC, Fernández-Redondo E, González M, San Miguel JF, García-Sanz R (Oct 2013). "Evaluating gene expression profiling by quantitative polymerase chain reaction to develop a clinically feasible test for outcome prediction in multiple myeloma". British Journal of Haematology. 163 (2): 223–34. doi: 10.1111/bjh.12519 . PMID   23952215. S2CID   207081358.

Further reading