TSHZ1

Last updated
TSHZ1
Identifiers
Aliases TSHZ1 , CAA, NY-CO-33, SDCCAG33, TSH1, teashirt zinc finger homeobox 1
External IDs OMIM: 614427 MGI: 1346031 HomoloGene: 4227 GeneCards: TSHZ1
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_001308210
NM_005786

NM_001081300
NM_001364993
NM_001364994

RefSeq (protein)

NP_001295139
NP_005777
NP_005777.3

NP_001074769
NP_001351922
NP_001351923

Location (UCSC) Chr 18: 75.21 – 75.29 Mb Chr 18: 84.03 – 84.11 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Teashirt zinc finger homeobox 1 is a protein that in humans is encoded by the TSHZ1 gene. [5]

Contents

Function

This gene encodes a colon cancer antigen that was defined by serological analysis of recombinant cDNA expression libraries. The encoded protein is a member of the teashirt C2H2-type zinc-finger protein family and may be involved in transcriptional regulation of developmental processes. Mutations in this gene may be associated with congenital aural atresia syndrome.

In Animal Models

In addition to humans, orthologous Tshz-family genes are known to exist in several other organisms, including invertebrates like insects. Research using model organisms can be majorly beneficial in exploring the potential functionality of genes that are present in humans without requiring human testing. Additionally, by looking at gene number and function changes between organisms with differing levels of relatedness, it is possible to gain a better understanding of the gene’s phylogeny, or evolutionary history. Findings related to Tshz1 orthologs in model organisms varies in scale and density of research from organism to organism.

In Mice

Mice are commonly used to study Tshz1 functionality due to their closer relatedness to humans as mammals compared to other common model organisms. However, Tshz1 genes in non-model mammalian organisms have been characterized, or explored in detail, to a limited extent. The Tshz1 ortholog in the Mus musculus mouse model has been implicated in motor neuron development [6] and craniofacial morphogenesis. [7]   Experiments involving whole gene knockout of Tshz1 during development resulted in universal lethality of M. musculus pups shortly after birth, presumably due to soft palate defects and skeletal deformities linked with Tshz1 inactivation. [8] Mutant mice in knockout and loss of function experiments have been observed to be unable to suckle and feed, with their intestines filling up with air shortly after birth and their stomach appearing distended compared to wild type individuals. [8] Investigations into Tshz1 impact on motor neuron development have been limited in scale, however Tshz1 mutant mice have been observed to have difficulties regulating breathing, due to decreased survival of Hypoglossal nerve and phrenic motor neurons during development. [8]

In Zebrafish

Tshz1 orthologs in Danio rerio have largely yet to be characterized, however experiments using in-situ hybridization to mark gene expression have shown that Tshz1a is most highly expressed in the spinal cord, fore-to-hindbrain, and eye during early development. [9] Consequently, it is suspected that Tshz1a may play a role in neuron development in the brain and visual system, including the retina. [9] Three other Tshz family genes are known to exist in Zebrafish: Tshz2, Tshz3a, and Tshz3b. A fifth gene, Tshz1b, is predicted to exist. [10] Multiple versions of the same gene commonly exist in the Zebrafish genome, referred to as ‘a’ and ‘b’, due to an evolutionary event known as WGD (Whole Genome Duplication) in the ancestral lineage of Teleost fish, which Zebrafish belong to. [11] The potential existence of Tshz1b is therefore contingent on whether or not the Tshz1 ortholog in the Zebrafish ancestor existed prior to the WGD event/events, and if so, whether or not Tshz1b was lost subsequently over time due to chromosome rearrangement.

In Fruit Flies

Drosophila melanogaster is known to possess one Tshz family gene, commonly referred to as Tsh or T Shirt, and is known to be orthologous to the Tshz gene family in humans and other vertebrates. [12] Tsh has been found to be involved in DNA-binding activity and several aspects of development, including formation of head structures [13] and wing hinge development. [14] Other important processes Tsh is involved in include segmental identity, dorsal/ventral patterning, and development of the compound eye. [12] Additionally, Tsh has been used as a test gene for creating more streamlined methods for determining the position of enhancer elements due to its large ratio of non-coding RNAs. [15] While distantly related to humans, the presence of a Tshz-family gene in D. melanogaster suggests that this gene family originates early in the evolutionary lineage of modern-day organisms, before the divergence of vertebrate and invertebrate eukaryotes. Currently, no non-eukaryotic organisms are known to possess a Tshz-orthologous gene, but several other invertebrates, such as Bactrocera latifrons [16] and Ceratitis capitata [17] have known Tsh orthologs.

Related Research Articles

Hox genes, a subset of homeobox genes, are a group of related genes that specify regions of the body plan of an embryo along the head-tail axis of animals. Hox proteins encode and specify the characteristics of 'position', ensuring that the correct structures form in the correct places of the body. For example, Hox genes in insects specify which appendages form on a segment, and Hox genes in vertebrates specify the types and shape of vertebrae that will form. In segmented animals, Hox proteins thus confer segmental or positional identity, but do not form the actual segments themselves.

<span class="mw-page-title-main">GLI2</span> Protein-coding gene in the species Homo sapiens

Zinc finger protein GLI2 also known as GLI family zinc finger 2 is a protein that in humans is encoded by the GLI2 gene. The protein encoded by this gene is a transcription factor.

<span class="mw-page-title-main">Neurofibromin 1</span> Mammalian protein found in Homo sapiens

neurofibromatosis 1 (NF1) is a gene in humans that is located on chromosome 17. NF1 codes for neurofibromin, a GTPase-activating protein that negatively regulates RAS/MAPK pathway activity by accelerating the hydrolysis of Ras-bound GTP. NF1 has a high mutation rate and mutations in NF1 can alter cellular growth control, and neural development, resulting in neurofibromatosis type 1. Symptoms of NF1 include disfiguring cutaneous neurofibromas (CNF), café au lait pigment spots, plexiform neurofibromas (PN), skeletal defects, optic nerve gliomas, life-threatening malignant peripheral nerve sheath tumors (MPNST), pheochromocytoma, attention deficits, learning deficits and other cognitive disabilities.

<span class="mw-page-title-main">HOXB5</span> Protein-coding gene in humans

Homeobox protein Hox-B5 is a protein that in humans is encoded by the HOXB5 gene.

<span class="mw-page-title-main">DLX5</span> Mammalian protein found in Homo sapiens

Homeobox protein DLX-5 is a protein that in humans is encoded by the distal-less homeobox 5 gene, or DLX5 gene. DLX5 is a member of the DLX gene family.

<i>HLX</i> (gene) Protein-coding gene in the species Homo sapiens

Homeobox Protein HB24 is a protein that in humans is encoded by the HLX gene.

<span class="mw-page-title-main">HOXB8</span> Protein-coding gene in the species Homo sapiens

Homeobox protein Hox-B8 is a protein that in humans is encoded by the HOXB8 gene.

<span class="mw-page-title-main">ATOH1</span> Protein-coding gene in the species Homo sapiens

Protein atonal homolog 1 is a protein that in humans is encoded by the ATOH1 gene.

<span class="mw-page-title-main">EMX2</span> Protein-coding gene in the species Homo sapiens

Homeobox protein Emx2 is a protein that in humans is encoded by the EMX2 gene.

<span class="mw-page-title-main">OSR1</span> Protein-coding gene in the species Homo sapiens

Protein odd-skipped-related 1 is a transcription factor that in humans is encoded by the OSR1 gene. The OSR1 and OSR2 transcription factors participate in the normal development of body parts such as the kidney.

<span class="mw-page-title-main">NKX2-2</span> Protein-coding gene in the species Homo sapiens

Homeobox protein Nkx-2.2 is a protein that in humans is encoded by the NKX2-2 gene.

<span class="mw-page-title-main">EMX1</span> Protein-coding gene in the species Homo sapiens

Homeobox protein EMX1 is a protein that in humans is encoded by the EMX1 gene. The transcribed EMX1 gene is a member of the EMX family of transcription factors. The EMX1 gene, along with its family members, are expressed in the developing cerebrum. EMX1 plays a role in specification of positional identity, the proliferation of neural stem cells, differentiation of layer-specific neuronal phenotypes and commitment to a neuronal or glial cell fate.

<span class="mw-page-title-main">LHX1</span> Protein-coding gene in the species Homo sapiens

LIM homeobox 1 is a protein that in humans is encoded by the LHX1 gene. This gene encodes a member of a large protein family which contains the LIM domain, a unique cysteine-rich zinc-binding domain. The encoded protein is a transcription factor important for control of differentiation and development of neural and lymphoid cells. It is also key in development of renal and urogenital systems and is required for normal organogenesis. A similar protein in mice is an essential regulator of the vertebrate head organizer.

<span class="mw-page-title-main">PHF1</span> Protein-coding gene in the species Homo sapiens

PHD finger protein 1 is a protein that in humans is encoded by the PHF1 gene.

<span class="mw-page-title-main">TSHZ3</span> Protein-coding gene in the species Homo sapiens

Teashirt homolog 3 is a protein that in humans is encoded by the TSHZ3 gene. In mice, it is a necessary part of the neural circuitry that controls breathing. The gene is also a homolog of the Drosophila melanogaster teashirt gene, which encodes a zinc finger transcription factor important for development of the trunk.

<span class="mw-page-title-main">TBR1</span> Protein-coding gene in Homo sapiens

T-box, brain, 1 is a transcription factor protein important in vertebrate embryo development. It is encoded by the TBR1 gene. This gene is also known by several other names: T-Brain 1, TBR-1, TES-56, and MGC141978. TBR1 is a member of the TBR1 subfamily of T-box family transcription factors, which share a common DNA-binding domain. Other members of the TBR1 subfamily include EOMES and TBX21. TBR1 is involved in the differentiation and migration of neurons and is required for normal brain development. TBR1 interacts with various genes and proteins in order to regulate cortical development, specifically within layer VI of the developing six-layered human cortex. Studies show that TBR1 may play a role in major neurological diseases such as Alzheimer's disease (AD), Parkinson's disease (PD) and autism spectrum disorder (ASD).

<span class="mw-page-title-main">IRX3</span> Protein-coding gene in the species Homo sapiens

Iroquois-class homeodomain protein IRX-3, also known as Iroquois homeobox protein 3, is a protein that in humans is encoded by the IRX3 gene.

Vasa is an RNA binding protein with an ATP-dependent RNA helicase that is a member of the DEAD box family of proteins. The vasa gene is essential for germ cell development and was first identified in Drosophila melanogaster, but has since been found to be conserved in a variety of vertebrates and invertebrates including humans. The Vasa protein is found primarily in germ cells in embryos and adults, where it is involved in germ cell determination and function, as well as in multipotent stem cells, where its exact function is unknown.

<i>Cycle</i> (gene)

Cycle (cyc) is a gene in Drosophila melanogaster that encodes the CYCLE protein (CYC). The Cycle gene (cyc) is expressed in a variety of cell types in a circadian manner. It is involved in controlling both the sleep-wake cycle and circadian regulation of gene expression by promoting transcription in a negative feedback mechanism. The cyc gene is located on the left arm of chromosome 3 and codes for a transcription factor containing a basic helix-loop-helix (bHLH) domain and a PAS domain. The 2.17 kb cyc gene is divided into 5 coding exons totaling 1,625 base pairs which code for 413 aminos acid residues. Currently 19 alleles are known for cyc. Orthologs performing the same function in other species include ARNTL and ARNTL2.

Catecholamines up (Catsup) is a dopamine regulatory membrane protein that functions as a zinc ion transmembrane transporter (orthologous to ZIP7), and a negative regulator of rate-limiting enzymes involved in dopamine synthesis and transport: Tyrosine hydroxylase (TH), GTP Cyclohydrolase I (GTPCH), and Vesicular Monoamine Transporter (VMAT) in Drosophila melanogaster.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000179981 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000046982 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. "Entrez Gene: Teashirt zinc finger homeobox 1".
  6. Chaimowicz C, Ruffault PL, Chéret C, Woehler A, Zampieri N, Fortin G, et al. (September 2019). "Teashirt 1 (Tshz1) is essential for the development, survival and function of hypoglossal and phrenic motor neurons in mouse". Development. 146 (17): dev.174045. doi:10.1242/dev.174045. PMC   6765129 . PMID   31427287.
  7. Melvin VS, Feng W, Hernandez-Lagunas L, Artinger KB, Williams T (July 2013). "A morpholino-based screen to identify novel genes involved in craniofacial morphogenesis". Developmental Dynamics. 242 (7): 817–831. doi:10.1002/dvdy.23969. PMC   4027977 . PMID   23559552.
  8. 1 2 3 Coré N, Caubit X, Metchat A, Boned A, Djabali M, Fasano L (August 2007). "Tshz1 is required for axial skeleton, soft palate and middle ear development in mice". Developmental Biology. 308 (2): 407–420. doi: 10.1016/j.ydbio.2007.05.038 . PMID   17586487.
  9. 1 2 Wang H, Lee EM, Sperber SM, Lin S, Ekker M, Long Q (January 2007). "Isolation and expression of zebrafish zinc-finger transcription factor gene tsh1". Gene Expression Patterns. 7 (3): 318–322. doi:10.1016/j.modgep.2006.08.004. PMID   17035100.
  10. Santos JS, Fonseca NA, Vieira CP, Vieira J, Casares F (March 2010). "Phylogeny of the teashirt-related zinc finger (tshz) gene family and analysis of the developmental expression of tshz2 and tshz3b in the zebrafish". Developmental Dynamics. 239 (3): 1010–1018. doi:10.1002/dvdy.22228. PMID   20108322. S2CID   27433898.
  11. Glasauer SM, Neuhauss SC (December 2014). "Whole-genome duplication in teleost fishes and its evolutionary consequences" (PDF). Molecular Genetics and Genomics. 289 (6): 1045–1060. doi:10.1007/s00438-014-0889-2. PMID   25092473. S2CID   6425319.
  12. 1 2 Caubit X, Coré N, Boned A, Kerridge S, Djabali M, Fasano L (March 2000). "Vertebrate orthologues of the Drosophila region-specific patterning gene teashirt". Mechanisms of Development. 91 (1–2): 445–8. doi:10.1016/s0925-4773(99)00318-4. PMID   10704881. S2CID   6771237.
  13. Bhojwani J, Shashidhara LS, Sinha P (August 1997). "Requirement of teashirt (tsh) function during cell fate specification in developing head structures in Drosophila". Development Genes and Evolution. 207 (3): 137–146. doi:10.1007/s004270050101. PMID   27747411. S2CID   10305055.
  14. Soanes KH, MacKay JO, Core N, Heslip T, Kerridge S, Bell JB (July 2001). "Identification of a regulatory allele of teashirt (tsh) in Drosophila melanogaster that affects wing hinge development. An adult-specific tsh enhancer in Drosophila". Mechanisms of Development. 105 (1–2): 145–151. doi:10.1016/S0925-4773(01)00397-5. PMID   11429289. S2CID   14831771.
  15. Voutev R, Mann RS (March 2016). "Streamlined scanning for enhancer elements in Drosophila melanogaster". BioTechniques. 60 (3): 141–144. doi:10.2144/000114391. PMC   5464965 . PMID   26956092.
  16. "Protein teashirt [Ceratitis capitata (Mediterranean fruit fly)]". Entrez Gene. National Center for Biotechnology Information (NCBI), U.S. National Library of Medicine.
  17. "Protein teashirt [Bactrocera latifrons]". Entrez Gene. National Center for Biotechnology Information (NCBI), U.S. National Library of Medicine.

Further reading

This article incorporates text from the United States National Library of Medicine, which is in the public domain.