TV detector van

Last updated

A 1983 Leyland Sherpa television detector van at the Postal Museum, London BLW TV Detector Van.jpg
A 1983 Leyland Sherpa television detector van at the Postal Museum, London

TV detector vans are vans which contain equipment that can detect the presence of television sets in use. [1] These vans have been used by the General Post Office and later by contractors working for the BBC to enforce the television licensing system in the UK, the Channel Islands and on the Isle of Man.

Contents

History

When television broadcasts in the UK were resumed after a break due to World War 2, it was decided to introduce a television licence fee to finance the service. When first introduced on 1 June 1946, the licence covering the monochrome-only single-channel BBC television service cost £2 (equivalent to £104.79 as of 2023). [2] The licence was originally issued by the General Post Office (GPO), which was then the regulator of public communications within the UK. Since it was not possible to stop people without a licence from buying and operating a TV, it was necessary to find ways of enforcing the TV licence system. One of the methods used to identify TV use without a licence was TV detection equipment mounted in a van.

The first TV detector van was unveiled on 1 February 1952. [1] [3] In the 1950s, the Post Office, which then administered the TV licensing system, ran converted Hillman Minx and Morris Oxford estate cars, which had large aerials attached to their roofs.[ citation needed ] Subsequently, Commers were introduced. In the 1980s, vans were supplied by Dodge and Leyland. In the 1990s, Ford Transits were introduced. In 2003, TVL launched its 10th model of detector vans. It was stated that these vans had removable branding so that they could operate covertly. [4]

Although no operating principles for the TV detectors said to be used in these vans were revealed by the BBC, it was thought that they operated by detecting electromagnetic radiation given off by a TV, although "more usually, the authorities receive details of TV sales from the dealer". [5] [3] [6] [7] The most common suggested method was the detection of a signal from the TV's local oscillator. [8]

In 2013, the Radio Times obtained a leaked internal document from the BBC giving a breakdown of prosecutions for TV licence evasion. [9] The 18-page document gave a breakdown of the number of people evading the charge, as well as mentioning the number of people employed to catch those who do not pay their television licence. [10] However, no mention was made of TV detector vans being used to catch such people, prompting media speculation over the truth of their existence. In response a BBC spokeswoman rejected claims that the vans are a hoax: "Detector vans are an important part of our enforcement of the licence fee. We don't go into detail about how many there are or how they work as this information might be useful to people trying to evade the fee." [9]

Detection techniques

Around ten generations of detector van technology were used. [4] The first three were described in The Post Office Electrical Engineers' Journal . [3] [6] [7]

Line-scan

The first detector was introduced in 1952. It operated by detecting the magnetic field, rather than any radio signal, of the horizontal line-scanning deflection within the cathode ray tube. Television tubes, unlike oscilloscopes, used magnetic deflection. The deflection current was a sawtooth with a frequency of 10.125 kHz. [3]

As this was the horizontal deflection, the magnetic field lines were almost vertical. Three small horizontal loop antennae were thus used to detect it, mounted on the roof of the detector van. These were arranged in an L shape, manually switched in two pairs of either diagonally front-back and side-side. The coils, and their receiver, were tuned to a fixed frequency of 20.25 kHz, the second harmonic of the line-scan signal, with a bandwidth of 200 Hz. The line-scan frequency was generated within the TV as a multiple of the mains frequency and could vary slightly long-term. This bandwidth was chosen to allow reception of a varying frequency, yet also to exclude as much ignition noise from the van's engine as possible. This ignition interference was the source of the main limitation on the detector's performance. The second harmonic frequency was chosen as it allowed the use of commercially available radio receivers, whilst avoiding both excessive ignition interference at the fundamental frequency, or confusing long wave radio carriers with the higher harmonics. The received signal was mixed with a local beat frequency oscillator (BFO) to produce an audible 1 kHz beat frequency, just as is done for CW Morse radio reception. The operator detected signals by listening on headphones and a meter gave an indication of signal strength. [3]

To operate the detector, it was driven along the road past target houses. As an operating TV was approached, the signal increased. The operator could switch between pairs of the antennae, giving a peak sensitivity either ahead of the van, or to the side. When the two combinations were of equal strength, the van was alongside the house. A similar comparison could tell if the TV was to the left or right of the street. As the TV tube was being detected directly, the location of the TV aerial made no difference. [3]

VHF

By 1963 the second British TV network, ITV, had begun transmission. This made the original system of TV detection increasingly unworkable. The two networks did not have their line-scan signals accurately synchronised. If two nearby TVs were each tuned to different channels, [i] they then created a beat frequency effect which could swamp the TV detector. The original magnetic low-frequency detector system was also suffering because TV design had improved to radiate less of a magnetic field, and also the increasing number of cars made interference from their ignition circuits greater. [6]

A new detection system was required and this would rely on detecting leakage signals from the local oscillator used in superheterodyne radio receiver circuits. Transmissions at this time were on the 405-line system and used the Band I (47 to 68 MHz), Band II (87.5 to 108.0, VHF / FM sound-only radio [ii] ) and Band III (174 to 240 MHz) VHF bands. Because of the broadness of the TV transmission bands, and variations in the intermediate frequencies used, a detector receiver could have needed to be tunable between 29 and 240 MHz. By detecting either the fundamentals of Band III, or the harmonics of Bands I and II, the detector system managed to make do with only 110–250 MHz. [6]

The antenna on the detector car was a rotatable, highly directional antenna. It was used by taking bearings on the TV set from multiple locations and triangulating them. Its detection range was several hundred yards, although usually only a few houses distance on a built-up street. [iii] As the polarisation of the leaked signal was unpredictable, the detector aerial had to be able to receive mixed or elliptical polarisation. This was achieved with a dipole antenna which was tilted diagonally, placed in front of a metal mesh corner reflector, the whole assembly of which could be rotated. The beam width was narrow enough to give an accuracy of around 5° in locating a source. The complete antenna was large, and permanently mounted on top of a Morris Oxford Traveller estate car,[ citation needed ] rather than the previous van, so that the overall height of 9 ft 9 in (3 m) was no more than a typical large van, avoiding height clearance problems. It was mounted on a 2" diameter aluminium tube mast, rotated manually by a handwheel. The receiver and display were built into a single box, mounted where the front passenger seat had been. The operator and a Postal And Telegraph Operator, [iv] who also acted as a map reader and who had a list of valid and recently-expired licences, sat on the rear passenger seat. An unusual feature of the vehicle was an optical periscope, slaved to the rotation of the mast, which identified the house from which the signals were detected. At night, this could be used to project a spot of light instead. To avoid the operator needing to move their head with the periscope, [v] a pair of prisms were used to produce the rotation, with a fixed eyepiece. [6]

The receiver electronics produced a frequency analyser panoramic display on a 5" CRT screen. This display was swept automatically across a range up to 8 MHz. The initial input stage was based on an existing TV 'turret tuner' design, [vi] with manual selection across 14 bands spanning 110–250 MHz. As the number of broadcast channels in use locally was very small, [vii] only a couple of the mechanically-switched bands would be needed for each detection search. The receiver circuit was a triple superheterodyne, with the second IF frequency being swept between 60 and 70 MHz, in synchronism with the CRT horizontal scan. The IF oscillator was controlled by the sweep signal through a form of transductor circuit, where a control winding controlled the reluctance of the inductor controlling the oscillator frequency. This sweep range was controllable by the operator and could be reduced to zero, making the receiver a simple receiver with an output to headphones. [6]

UHF

1982 Dodge SpaceVan equipped as UHF detector van. Displayed at Science Museum, London. (As of January 2015
) Dodge detector van.JPG
1982 Dodge SpaceVan equipped as UHF detector van. Displayed at Science Museum, London. (As of January 2015)

The introduction of UHF 625-line TV to the UK, and the possibility of colour TV, used Bands IV and V and required a new generation of detector vans. A new, more expensive, colour licence was also introduced and an increase in licence evasion was anticipated, as licences were not upgraded for new colour sets.

Once again, by detecting only the upper range of the frequency band, the upper fundamentals and the harmonics of the lower bands could both be detected with the same equipment, without requiring an impractically broad frequency range for the detector receiver. Two new problems needed to be addressed for detection of the new sets: firstly the emissions were both higher in frequency and lower in signal strength than before. Secondly, the propagation of signals at this wavelength and their tendency for confusing reflections from many nearby surfaces meant that the previous triangulation method from a couple of positions was no longer reliable. A method was needed which could replace triangulation by a more immediate form of location. [7]

A suitable broadband aerial for the frequency range of 470–860 MHz was a log-periodic spiral, wound on a six-foot long conical former. This had a directionality of 40° for a beam width at half maximum power. [viii] To give a narrower directionality, two of these aerials were mounted together in parallel, and spaced apart by 6λ, or six wavelengths at the detected frequency. The aerials pointed sideways in operation, and could be turned lengthwise for driving to the search site. As the necessary spacing varied with frequency, the forward aerial moved backwards and forwards automatically, with tuning. At low frequencies, the large spacing needed required an extension of the van's roof forwards in a prominent box. Waterproofing was provided by a greased neoprene flap, closed by a zipper when not in use. A common misunderstanding was that the aerials moved in a scanning pattern when searching, as the VHF detectors had, but in fact they remained static. [7]

The receiver beam pattern of the two aerial system was still approximately 40° across, but this was now divided into seven sharply defined lobes, with a central lobe only about 4° across. The motion of the vehicle driving slowly was used as the scanning mechanism and a rotation sensor on the speedometer drive provided the X-axis scanning signal for the display. A manual pushbutton was pressed as each house boundary was passed. The ideal detection display was thus a series of seven peaks, centred on the position between the two house markers for the target house. Two CRTs were used for display, one by the operator and the other for providing a photographic record. A Polaroid 'instant' camera was used, so that the print could be produced at the time, before confronting the homeowner. [7]

The initial search for the presence of a TV, rather than accurately locating its position, was done with a separate aerial pair. These were a simple pair of dipoles, one on either side of a shared reflector plate, and comparing signal strength from each side. Later detector vans, such as the Leyland illustrated, used a development of that technique with paired aerials, making a mechanically much simpler aerial system. [7]

The completed system was the most visually well-recognised of all the TV detector vans, particularly as their success and the expanded enforcement campaign with the growth of colour TV made them the most numerous. The system was mounted in a Commer PB van, as was becoming the standard GPO Telephones van, although extensively modified to carry the aerials. They also had an automatic gearbox, to ease the task of driving slowly down urban streets. [7]

Flat-screen TVs

A 2013 study was conducted on television emissions detection by Markus G. Kuhn. [11] This found that emissions from modern sets were still detectable, but that it was increasingly difficult to relate these to the received signal, and thus to correlate a set's emissions with a particular licensed broadcast. The sets radiated from a number of sources, particularly the display controller and its low-voltage differential signaling link to the LCD panel. [12]

Modern sets follow a consistent internal structure of a separate front-end video processor and a display controller, each highly integrated to a single IC. They are supplied by some form of analogue tuner, according to local broadcast standards. The video processor converts an analogue signal to a consistent digital signal standard, such as ITU-656. The display controller then maps this signal to the particular screen panel fitted, its pixel dimensions, such as the 1440×900 WXGA+ standard, which is entirely separate from the broadcast size standards, such as 720×576. The display controller also maps aspect ratios such as 4:3 and 16:9. [11]

Difficulty in identifying emanations from a set is for a number of reasons. Firstly the emissions are simply lower, owing to modern standards for EMI and the increasingly enforced compliance with EMC standards. Signals within the video processor IC would be an obvious target for recognition, in a similar manner to older detectors, but these are far too low to be measurable outside. Secondly the available signals are now divorced from the broadcast signal. The LVDS link to the LCD panel provides receivable signals, but these are dependent on the configuration of the panel as much as on the broadcast being received, and are hard to reconstruct so as to be recognisable. [11]

In the crudest manners, a discernible video signal can be recognised, but this would be hard to tie to a specific broadcast, or to an evidentiary standard. A simple optical detector may be able to achieve just as much, and from a simpler circuit. [11] There is some suggestion that this method is now in use. [13]

Hierarchy

The BBC, to administer [14] the collection of television licence fees and enforce the television licensing system, subcontracts to companies who use the trademark TV Licensing. [15] The BBC is a public authority in respect of its television licensing functions and retains overall responsibility. [15]

subcontractor companies

Detector vans are operated by Capita Business Services Ltd, a contractor of the BBC. [16]

Operation

Some information regarding TV detection technology was revealed as part of a freedom of information request made to the BBC in 2013, which included details of a search warrant. The warrant revealed that a BBC contractor had used an "optical detector" to reveal the possible presence of a TV. [13] The warrant stated that: "the optical detector in the detector van uses a large lens to collect that light and focus it on to an especially sensitive device, which converts fluctuating light signals into electrical signals, which can be electronically analysed. If a receiver is being used to watch broadcast programmes then a positive reading is returned." [13] The BBC stated that this was strong evidence that a set was "receiving a possible broadcast".

According to the Comptroller and Auditor General of the National Audit Office, "where the BBC still suspects that an occupier is watching live television but not paying for a licence, it can send a detection van to check whether this is the case. TVL detection vans can identify viewing on a non-TV device in the same way that they can detect viewing on a television set. BBC staff were able to demonstrate this to my staff in controlled conditions sufficient for us to be confident that they could detect viewing on a range of non-TV devices." [17]

In July 2019, an article in the Oxford Mail recalled a two-week period from June 1960 when an olive-green TV detector van—one of a fleet of nine owned by the BBC—toured the city to investigate 500 addresses with no record of a television licence. The van contained a team of three people, "including a radio expert and a local Post Office official" and was equipped with a number of aerials that could be adjusted to pinpoint a signal being given off by a television at a specific address. The article quoted Ron Smith, who was in charge of the operation, and explained the process: "When a TV set is switched on it gives out a radio signal. The detector van then used its adapted radio receiver which is tuned to the wavelength of the signal and then converts it to a whistle transmitted through the technical officer's headphones." The team were authorised to ask residents to produce their TV licence and to note down their details if they couldn't. [18]

Regulation of use

TV detection is a form of covert surveillance and as such is regulated by the Regulation of Investigatory Powers Act 2000 (RIPA). More specifically, the BBC's use of surveillance is defined by the Regulation of Investigatory Powers (British Broadcasting Corporation) Order 2001. [19] Like other public bodies that undertake covert surveillance, the BBC is subject to the scrutiny of the Office of Surveillance Commissioners, which inspects the BBC every other year. [20] A number of official inspection reports on the BBC's detection methods have been made available following freedom-of-information requests. [21] These reports give an outline of the process of authorisation of the use of detection equipment. Briefly, applications for authorisation are made in the name of the Detection Manager. Correspondence between TV Licensing and the affected householder may be attached to the completed application forms, which pass through a quality-control "gatekeeper" to the authorising officers (AOs) at the BBC. In 2012 there were two designated AOs at the BBC. To be authorised, an application must be shown to be "necessary and proportionate". AOs sometimes reject applications. Once approved, the authorisation lasts for a duration of eight weeks.

See also

Notes

  1. The different TV signals were the issue, rather than receiver frequencies.
  2. Radio licences were required in the UK until 1971, see Television licensing in the UK, and detection services could also search for unlicensed VHF radio receivers.
  3. In rural areas, the obvious approach of a detector car often caused the TV set to be switched off immediately and so long range was of little practical use.
  4. The Postal And Telegraph Operator had a Home Office warrant card as a special constable, which permitted them to carry out searches.
  5. As with a submarine periscope.
  6. A 'turret tuner' was a common design of the day for VHF TV tuning. A mechanical drum with a large handwheel rotated the 14 duplicated pre-tuned input filters and switched them into circuit, one-by-one.
  7. On the border between two network areas, a TV of this period might, at most, be receiving four channels.
  8. This is a typical measure for the directionality of an aerial. At 20° off-axis, the power detected would be half that from the same source on-axis.

Related Research Articles

<span class="mw-page-title-main">Analog television</span> Television that uses analog signals

Analog television is the original television technology that uses analog signals to transmit video and audio. In an analog television broadcast, the brightness, colors and sound are represented by amplitude, phase and frequency of an analog signal.

<span class="mw-page-title-main">Superheterodyne receiver</span> Type of radio receiver

A superheterodyne receiver, often shortened to superhet, is a type of radio receiver that uses frequency mixing to convert a received signal to a fixed intermediate frequency (IF) which can be more conveniently processed than the original carrier frequency. It was invented by French radio engineer and radio manufacturer Lucien Lévy. Virtually all modern radio receivers use the superheterodyne principle.

<span class="mw-page-title-main">Very high frequency</span> Electromagnetic wave range of 30-300 MHz

Very high frequency (VHF) is the ITU designation for the range of radio frequency electromagnetic waves from 30 to 300 megahertz (MHz), with corresponding wavelengths of ten meters to one meter. Frequencies immediately below VHF are denoted high frequency (HF), and the next higher frequencies are known as ultra high frequency (UHF).

<span class="mw-page-title-main">Intermediate frequency</span> Frequency to which a carrier wave is shifted during transmission or reception

In communications and electronic engineering, an intermediate frequency (IF) is a frequency to which a carrier wave is shifted as an intermediate step in transmission or reception. The intermediate frequency is created by mixing the carrier signal with a local oscillator signal in a process called heterodyning, resulting in a signal at the difference or beat frequency. Intermediate frequencies are used in superheterodyne radio receivers, in which an incoming signal is shifted to an IF for amplification before final detection is done.

<span class="mw-page-title-main">Ultra high frequency</span> Electromagnetic spectrum 300–3000 MHz

Ultra high frequency (UHF) is the ITU designation for radio frequencies in the range between 300 megahertz (MHz) and 3 gigahertz (GHz), also known as the decimetre band as the wavelengths range from one meter to one tenth of a meter. Radio waves with frequencies above the UHF band fall into the super-high frequency (SHF) or microwave frequency range. Lower frequency signals fall into the VHF or lower bands. UHF radio waves propagate mainly by line of sight; they are blocked by hills and large buildings although the transmission through building walls is strong enough for indoor reception. They are used for television broadcasting, cell phones, satellite communication including GPS, personal radio services including Wi-Fi and Bluetooth, walkie-talkies, cordless phones, satellite phones, and numerous other applications.

<span class="mw-page-title-main">Radio broadcasting</span> Transmission by radio waves intended to reach a wide audience

Radio broadcasting is the broadcasting of audio (sound), sometimes with related metadata, by radio waves to radio receivers belonging to a public audience. In terrestrial radio broadcasting the radio waves are broadcast by a land-based radio station, while in satellite radio the radio waves are broadcast by a satellite in Earth orbit. To receive the content the listener must have a broadcast radio receiver (radio). Stations are often affiliated with a radio network that provides content in a common radio format, either in broadcast syndication or simulcast, or both. The encoding of a radio broadcast depends on whether it uses an analog or digital signal. Analog radio broadcasts use one of two types of radio wave modulation: amplitude modulation for AM radio, or frequency modulation for FM radio. Newer, digital radio stations transmit in several different digital audio standards, such as DAB, HD radio, or DRM.

<span class="mw-page-title-main">Terrestrial television</span> Television content transmitted via signals in the air

Terrestrial television, or over-the-air television (OTA) is a type of television broadcasting in which the content is transmitted via radio waves from the terrestrial (Earth-based) transmitter of a TV station to a TV receiver having an antenna. The term terrestrial is more common in Europe and Latin America, while in Canada and the United States it is called over-the-air or simply broadcast. This type of TV broadcast is distinguished from newer technologies, such as satellite television, in which the signal is transmitted to the receiver from an overhead satellite; cable television, in which the signal is carried to the receiver through a cable; and Internet Protocol television, in which the signal is received over an Internet stream or on a network utilizing the Internet Protocol. Terrestrial television stations broadcast on television channels with frequencies between about 52 and 600 MHz in the VHF and UHF bands. Since radio waves in these bands travel by line of sight, reception is generally limited by the visual horizon to distances of 64–97 kilometres, although under better conditions and with tropospheric ducting, signals can sometimes be received hundreds of kilometers distant.

<span class="mw-page-title-main">TV and FM DX</span> Long-distance reception of signals on the VHF frequency band

TV DX and FM DX is the active search for distant radio or television stations received during unusual atmospheric conditions. The term DX is an old telegraphic term meaning "long distance."

<span class="mw-page-title-main">FM broadcast band</span> Radio broadcast band

The FM broadcast band is a range of radio frequencies used for FM broadcasting by radio stations. The range of frequencies used differs between different parts of the world. In Europe and Africa and in Australia and New Zealand, it spans from 87.5 to 108 megahertz (MHz) - also known as VHF Band II - while in the Americas it ranges from 88 to 108 MHz. The FM broadcast band in Japan uses 76 to 95 MHz, and in Brazil, 76 to 108 MHz. The International Radio and Television Organisation (OIRT) band in Eastern Europe is from 65.9 to 74.0 MHz, although these countries now primarily use the 87.5 to 108 MHz band, as in the case of Russia. Some other countries have already discontinued the OIRT band and have changed to the 87.5 to 108 MHz band.

Broadcasttelevision systems are the encoding or formatting systems for the transmission and reception of terrestrial television signals.

<span class="mw-page-title-main">Marine VHF radio</span> Radios operating in the very high frequency maritime mobile band

Marine VHF radio is a worldwide system of two way radio transceivers on ships and watercraft used for bidirectional voice communication from ship-to-ship, ship-to-shore, and in certain circumstances ship-to-aircraft. It uses FM channels in the very high frequency (VHF) radio band in the frequency range between 156 and 174 MHz, designated by the International Telecommunication Union as the VHF maritime mobile band. In some countries additional channels are used, such as the L and F channels for leisure and fishing vessels in the Nordic countries. Transmitter power is limited to 25 watts, giving them a range of about 100 kilometres.

<span class="mw-page-title-main">FM broadcasting</span> Radio transmission of audio by frequency modulation

FM broadcasting is a method of radio broadcasting that uses frequency modulation (FM) of the radio broadcast carrier wave. Invented in 1933 by American engineer Edwin Armstrong, wide-band FM is used worldwide to transmit high-fidelity sound over broadcast radio. FM broadcasting offers higher fidelity—more accurate reproduction of the original program sound—than other broadcasting techniques, such as AM broadcasting. It is also less susceptible to common forms of interference, having less static and popping sounds than are often heard on AM. Therefore, FM is used for most broadcasts of music and general audio. FM radio stations use the very high frequency range of radio frequencies.

<span class="mw-page-title-main">Television antenna</span> Antenna used with a television to receive television programs

A television antenna, also called a television aerial, is an antenna specifically designed for use with a television receiver (TV) to receive terrestrial over-the-air (OTA) broadcast television signals from a television station. Terrestrial television is broadcast on frequencies from about 47 to 250 MHz in the very high frequency (VHF) band, and 470 to 960 MHz in the ultra high frequency (UHF) band in different countries.

<span class="mw-page-title-main">Belling-Lee connector</span> Coaxial RF connector used for television

The Belling-Lee connector is commonly used in Europe, parts of Southeast Asia, and Australia, to connect coaxial cables with each other and with terrestrial VHF/UHF roof antennas, antenna signal amplifiers, CATV distribution equipment, TV sets, and FM and DAB radio receivers. In these countries, it is known colloquially as an aerial connector, IEC connector, PAL connector, or simply as a TV aerial connector. It is one of the oldest coaxial connectors still commonly used in consumer devices. For television signals, the convention is that the source has a male connector and the receptor has a female connector. For FM radio signals, the convention is that the source has a female connector and the receptor has a male connector. This is more or less universally adopted with TV signals, while it is not uncommon for FM radio receivers to deviate from this, especially FM radio receivers from companies not based in the areas that use this kind of connector.

<span class="mw-page-title-main">Moel y Parc transmitting station</span> Telecommunications transmission site in north-east Wales, UK

The Moel-y-Parc transmitting station is situated on Moel y Parc, a hill in north-east Wales at the northern end of the Clwydian range, close to the town of Caerwys and several miles (kilometres) north-east of Denbigh. It was built in 1962/1963 by the ITA to bring 405-line VHF ITV television to North Wales and it has been on the air since 1963. Its original height of 229 metres (751 ft) made it the tallest structure in North Wales and it stands on land that is itself about 335 metres (1,099 ft) above sea level. In 1965, VHF television transmissions from the BBC commenced from the site.

The 405-line monochrome analogue television broadcasting system was the first fully electronic television system to be used in regular broadcasting. The number of television lines influences the image resolution, or quality of the picture.

In the United Kingdom and the British Islands, any household watching or recording television transmissions at the same time they are being broadcast is required by law to hold a television licence. This applies regardless of transmission method, including terrestrial, satellite, cable, or for BBC iPlayer internet streaming. The television licence is the instrument used to raise revenue to fund the BBC and S4C.

Band I is a range of radio frequencies within the very high frequency (VHF) part of the electromagnetic spectrum. The first time there was defined "for simplicity" in Annex 1 of "Final acts of the European Broadcasting Conference in the VHF and UHF bands - Stockholm, 1961". Band I ranges from 47 to 68 MHz for the European Broadcasting Area, and from 54 to 88 MHz for the Americas and it is primarily used for television broadcasting in compliance with ITU Radio Regulations. With the transition to digital TV, most Band I transmitters have already been switched off.

<span class="mw-page-title-main">Radio</span> Use of radio waves to carry information

Radio is the technology of communicating using radio waves. Radio waves are electromagnetic waves of frequency between 3 hertz (Hz) and 300 gigahertz (GHz). They are generated by an electronic device called a transmitter connected to an antenna which radiates oscillating electrical energy, often characterized as a wave. They can be received by other antennas connected to a radio receiver; this is the fundamental principle of radio communication. In addition to communication, radio is used for radar, radio navigation, remote control, remote sensing, and other applications.

<span class="mw-page-title-main">UHF television broadcasting</span> Ultra high frequency radio to transmit TV

UHF television broadcasting is the use of ultra high frequency (UHF) radio for over-the-air transmission of television signals. UHF frequencies are used for both analog and digital television broadcasts. UHF channels are typically given higher channel numbers, like the US arrangement with VHF channels (initially) 1 to 13, and UHF channels (initially) numbered 14 to 83. Compared with an equivalent VHF television transmitter, to cover the same geographic area with a UHF transmitter requires a higher effective radiated power, implying a more powerful transmitter or a more complex antenna. However, the additional channels allow more broadcasters in a given region without causing objectionable mutual interference.

References

  1. 1 2 "Test drive for TV detector vans". BBC On This Day. 1 February 1952. Archived from the original on 10 May 2009. Retrieved 19 May 2009.
  2. UK Retail Price Index inflation figures are based on data from Clark, Gregory (2017). "The Annual RPI and Average Earnings for Britain, 1209 to Present (New Series)". MeasuringWorth . Retrieved 7 May 2024.
  3. 1 2 3 4 5 6 Bray, W.J. (July 1952). "The Detection of Television Receivers". The Post Office Electrical Engineers' Journal . 45 (part 2): 49–51.
  4. 1 2 "New generation of television detector vans hit the streets". BBC. Retrieved 3 June 2014.
  5. "Deceptor vans". New Scientist . 29 July 1995. Archived from the original on 4 January 2013. Retrieved 19 May 2014.
  6. 1 2 3 4 5 6 Burling, K.G.; Fenning, J.C. (January 1963). "A New Detection System for Television and V.H.F. Radio Receivers". The Post Office Electrical Engineers' Journal . 55 (part 4): 219.
  7. 1 2 3 4 5 6 7 McLachlan, A.S.; Kipp, D.E. (October 1969). "A New System for the Detection of V.H.F. Sound-Radio Receivers and V.H.F. and U.H.F. Television Receivers". The Post Office Electrical Engineers' Journal . 62 (part 3): 148.
  8. US 5404161,Douglass, Ralph G.&Furman, Arthur R.,"Tuned signal detector for use with a radio frequency receiver",published 1995-04-04, assigned to Information Resources Inc.
  9. 1 2 Carter, Claire (27 September 2013). "Myth of the TV detector van?". The Daily Telegraph. Retrieved 27 September 2015.
  10. Johnson, Robin (2 January 2014). "TV detector vans are out to catch Derbyshire licence dodgers". Derby Telegraph. Local World. Archived from the original on 4 January 2014. Retrieved 27 September 2015.
  11. 1 2 3 4 Kuhn, Markus G. (June 2013). "Compromising Emanations of LCD TV Sets" (PDF). IEEE Trans. Electromagn. Compat. 55 (3). IEEE: 564–570. doi:10.1109/TEMC.2013.2252353. S2CID   1703695 . Retrieved 21 July 2019.
  12. Kuhn, Markus G. "Compromising emanations of LCD TV sets". IEEE Transactions on Electromagnetic Compatibility 55.
  13. 1 2 3 "Statements involving TV Detector evidence". WhatDoTheyKnow . mySociety. 7 January 2013. Retrieved 18 December 2013.
  14. "FOI: Administering the Licence fee". TV Licensing. 2014. Archived from the original on 30 June 2014. Retrieved 7 February 2023.
  15. 1 2 3 4 5 6 7 Tankard, Rupert (29 July 2017). "TV Detector Vans - a Freedom of Information request to British Broadcasting Corporation". WhatDoTheyKnow . mySociety . Retrieved 7 February 2023.
  16. "Copy of contract with Capita Business Services Ltd – a Freedom of Information request to British Broadcasting Corporation". WhatDoTheyKnow . mySociety. 21 December 2013. Retrieved 13 September 2016.
  17. "British Broadcasting Corporation Television Licence Fee Trust Statement for the Year Ending 31 March 2016" (PDF). National Audit Office . Retrieved 18 August 2016.
  18. Wray, Fran (3 July 2019). "Remember when: The 'television detector' toured Oxford". Oxford Mail. Retrieved 21 July 2019.
  19. "Home Office – The Regulation of Investigatory Powers (British Broadcasting Corporation) Order 2001". Government of the United Kingdom. 4 July 2011. Retrieved 12 July 2011.
  20. "Annual Report of the Chief Surveillance Commissioner" (PDF). The Stationery Office. Retrieved 30 September 2013.
  21. "Office of the Surveillance Commissioner's Report, 2008". WhatDoTheyKnow . mySociety. 25 August 2013. Retrieved 12 January 2014.
  22. "The Young Ones- TV Man". YouTube. 6 February 2008.