Tangloids is a mathematical game for two players created by Piet Hein to model the calculus of spinors.
A description of the game appeared in the book "Martin Gardner's New Mathematical Diversions from Scientific American" by Martin Gardner from 1996 in a section on the mathematics of braiding. [1] [2] [3]
Two flat blocks of wood each pierced with three small holes are joined with three parallel strings. Each player holds one of the blocks of wood. The first player holds one block of wood still, while the other player rotates the other block of wood for two full revolutions. The plane of rotation is perpendicular to the strings when not tangled. The strings now overlap each other. Then the first player tries to untangle the strings without rotating either piece of wood. Only translations (moving the pieces without rotating) are allowed. Afterwards, the players reverse roles; whoever can untangle the strings fastest is the winner. Try it with only one revolution. The strings are of course overlapping again but they can not be untangled without rotating one of the two wooden blocks.
The Balinese cup trick, appearing in the Balinese candle dance, is a different illustration of the same mathematical idea. The anti-twister mechanism is a device intended to avoid such orientation entanglements. A mathematical interpretation of these ideas can be found in the article on quaternions and spatial rotation.
This game serves to clarify the notion that rotations in space have properties that cannot be intuitively explained by considering only the rotation of a single rigid object in space. The rotation of vectors does not encompass all of the properties of the abstract model of rotations given by the rotation group. The property being illustrated in this game is formally referred to in mathematics as the "double covering of SO(3) by SU(2)". This abstract concept can be roughly sketched as follows.
Rotations in three dimensions can be expressed as 3x3 matrices, a block of numbers, one each for x,y,z. If one considers arbitrarily tiny rotations, one is led to the conclusion that rotations form a space, in that if each rotation is thought of as a point, then there are always other nearby points, other nearby rotations that differ by only a small amount. In small neighborhoods, this collection of nearby points resembles Euclidean space. In fact, it resembles three-dimensional Euclidean space, as there are three different possible directions for infinitesimal rotations: x, y and z. This properly describes the structure of the rotation group in small neighborhoods. For sequences of large rotations, however, this model breaks down; for example, turning right and then lying down is not the same as lying down first and then turning right. Although the rotation group has the structure of 3D space on the small scale, that is not its structure on the large scale. Systems that behave like Euclidean space on the small scale, but possibly have a more complicated global structure are called manifolds. Famous examples of manifolds include the spheres: globally, they are round, but locally, they feel and look flat, ergo "flat Earth".
Careful examination of the rotation group reveals that it has the structure of a 3-sphere with opposite points identified. That means that for every rotation, there are in fact two different, distinct, polar opposite points on the 3-sphere that describe that rotation. This is what the tangloids illustrate. The illustration is actually quite clever. Imagine performing the 360 degree rotation one degree at a time, as a set of tiny steps. These steps take you on a path, on a journey on this abstract manifold, this abstract space of rotations. At the completion of this 360 degree journey, one has not arrived back home, but rather instead at the polar opposite point. And one is stuck there -- one can't actually get back to where one started until one makes another, a second journey of 360 degrees.
The structure of this abstract space, of a 3-sphere with polar opposites identified, is quite weird. Technically, it is a projective space. One can try to imagine taking a balloon, letting all the air out, then gluing together polar opposite points. If attempted in real life, one soon discovers it can't be done globally. Locally, for any small patch, one can accomplish the flip-and-glue steps; one just can't do this globally. (Keep in mind that the balloon is , the 2-sphere; it's not the 3-sphere of rotations.) To further simplify, one can start with , the circle, and attempt to glue together polar opposites; one still gets a failed mess. The best one can do is to draw straight lines through the origin, and then declare, by fiat, that the polar opposites are the same point. This is the basic construction of any projective space.
The so-called "double covering" refers to the idea that this gluing-together of polar opposites can be undone. This can be explained relatively simply, although it does require the introduction of some mathematical notation. The first step is to blurt out "Lie algebra". This is a vector space endowed with the property that two vectors can be multiplied. This arises because a tiny rotation about the x-axis followed by a tiny rotation about the y-axis is not the same as reversing the order of these two; they are different, and the difference is a tiny rotation in along the z-axis. Formally, this inequivalence can be written as , keeping in mind that x, y and z are not numbers but infinitesimal rotations. They don't commute.
One may then ask, "what else behaves like this?" Well, obviously the 3D rotation matrices do; after all, the whole point is that they do correctly, perfectly mathematically describe rotations in 3D space. As it happens, though, there are also 2x2, 4x4, 5x5, ... matrices that also have this property. One may reasonably ask "OK, so what is the shape of their manifolds?". For the 2x2 case, the Lie algebra is called su(2) and the manifold is called SU(2), and quite curiously, the manifold of SU(2) is the 3-sphere (but without the projective identification of polar opposites).
This now allows one to play a bit of a trick. Take a vector in ordinary 3D space (our physical space) and apply a rotation matrix to it. One obtains a rotated vector . This is the result of applying an ordinary, "common sense" rotation to . But one also has the Pauli matrices ; these are 2x2 complex matrices that have the Lie algebra property that and so these model the behavior of infinitesimal rotations. Consider then the product . The "double covering" is the property that there exists not one, but two 2x2 matrices such that
Here, denotes the inverse of ; that is, The matrix is an element of SU(2), and so for every matrix in SO(3), there are two corresponding : both and will do the trick. These two are the polar-opposites, and the projection is just boils down to the trivial observation that The tangeloid game is meant to illustrate that a 360 degree rotation takes one on a path from to . This is quite precise: one can consider a sequence of small rotations and the corresponding movement of ; the result does change sign. In terms of rotation angles the matrix will have a in it, but the matching will have a in it. Further elucidation requires actually writing out these formulas.
The sketch can be completed with some general remarks. First, Lie algebras are generic, and for each one, there are one or more corresponding Lie groups. In physics, 3D rotations of normal 3D objects are obviously described by the rotation group, which is a Lie group of 3x3 matrices . However, the spinors, the spin-1/2 particles, rotate according to the matrices in SU(2). The 4x4 matrices describe the rotation of spin-3/2 particles, and the 5x5 matrices describe the rotations of spin-2 particles, and so on. The representation of Lie groups and Lie algebras are described by representation theory. The spin-1/2 representation belongs to the fundamental representation, and the spin-1 is the adjoint representation. The notion of double-covering used here is a generic phenomenon, described by covering maps. Covering maps are in turn a special case of fiber bundles. The classification of covering maps is done via homotopy theory; in this case, the formal expression of double-covering is to say that the fundamental group is where the covering group is just encoding the two equivalent rotations and above. In this sense, the rotation group provides the doorway, the key to the kingdom of vast tracts of higher mathematics.
In mathematical physics and mathematics, the Pauli matrices are a set of three 2 × 2 complex matrices which are Hermitian, involutory and unitary. Usually indicated by the Greek letter sigma, they are occasionally denoted by tau when used in connection with isospin symmetries.
In geometry and physics, spinors are elements of a complex number-based vector space that can be associated with Euclidean space. A spinor transforms linearly when the Euclidean space is subjected to a slight (infinitesimal) rotation, but unlike geometric vectors and tensors, a spinor transforms to its negative when the space rotates through 360°. It takes a rotation of 720° for a spinor to go back to its original state. This property characterizes spinors: spinors can be viewed as the "square roots" of vectors.
In mathematics, the quaternion number system extends the complex numbers. Quaternions were first described by the Irish mathematician William Rowan Hamilton in 1843 and applied to mechanics in three-dimensional space. Hamilton defined a quaternion as the quotient of two directed lines in a three-dimensional space, or, equivalently, as the quotient of two vectors. Multiplication of quaternions is noncommutative.
In mathematics, homology is a general way of associating a sequence of algebraic objects, such as abelian groups or modules, with other mathematical objects such as topological spaces. Homology groups were originally defined in algebraic topology. Similar constructions are available in a wide variety of other contexts, such as abstract algebra, groups, Lie algebras, Galois theory, and algebraic geometry.
In physics, charge conjugation is a transformation that switches all particles with their corresponding antiparticles, thus changing the sign of all charges: not only electric charge but also the charges relevant to other forces. The term C-symmetry is an abbreviation of the phrase "charge conjugation symmetry", and is used in discussions of the symmetry of physical laws under charge-conjugation. Other important discrete symmetries are P-symmetry (parity) and T-symmetry.
In mechanics and geometry, the 3D rotation group, often denoted SO(3), is the group of all rotations about the origin of three-dimensional Euclidean space under the operation of composition.
In mathematics, the special unitary group of degree n, denoted SU(n), is the Lie group of n × n unitary matrices with determinant 1.
In mathematics, orientability is a property of some topological spaces such as real vector spaces, Euclidean spaces, surfaces, and more generally manifolds that allows a consistent definition of "clockwise" and "counterclockwise". A space is orientable if such a consistent definition exists. In this case, there are two possible definitions, and a choice between them is an orientation of the space. Real vector spaces, Euclidean spaces, and spheres are orientable. A space is non-orientable if "clockwise" is changed into "counterclockwise" after running through some loops in it, and coming back to the starting point. This means that a geometric shape, such as , that moves continuously along such a loop is changed into its own mirror image . A Möbius strip is an example of a non-orientable space.
In physics and mathematics, the Lorentz group is the group of all Lorentz transformations of Minkowski spacetime, the classical and quantum setting for all (non-gravitational) physical phenomena. The Lorentz group is named for the Dutch physicist Hendrik Lorentz.
In quantum field theory, the Dirac spinor is the spinor that describes all known fundamental particles that are fermions, with the possible exception of neutrinos. It appears in the plane-wave solution to the Dirac equation, and is a certain combination of two Weyl spinors, specifically, a bispinor that transforms "spinorially" under the action of the Lorentz group.
In quantum mechanics and computing, the Bloch sphere is a geometrical representation of the pure state space of a two-level quantum mechanical system (qubit), named after the physicist Felix Bloch.
In mathematics, a Killing vector field, named after Wilhelm Killing, is a vector field on a Riemannian manifold that preserves the metric. Killing fields are the infinitesimal generators of isometries; that is, flows generated by Killing fields are continuous isometries of the manifold. More simply, the flow generates a symmetry, in the sense that moving each point of an object the same distance in the direction of the Killing vector will not distort distances on the object.
In mathematics and quantum mechanics, a Dirac operator is a differential operator that is a formal square root, or half-iterate, of a second-order operator such as a Laplacian. The original case which concerned Paul Dirac was to factorise formally an operator for Minkowski space, to get a form of quantum theory compatible with special relativity; to get the relevant Laplacian as a product of first-order operators he introduced spinors. It was first published in 1928.
A frame field in general relativity is a set of four pointwise-orthonormal vector fields, one timelike and three spacelike, defined on a Lorentzian manifold that is physically interpreted as a model of spacetime. The timelike unit vector field is often denoted by and the three spacelike unit vector fields by . All tensorial quantities defined on the manifold can be expressed using the frame field and its dual coframe field.
In mathematics and physics, in particular quantum information, the term generalized Pauli matrices refers to families of matrices which generalize the properties of the Pauli matrices. Here, a few classes of such matrices are summarized.
In 4-dimensional topology, a branch of mathematics, Rokhlin's theorem states that if a smooth, orientable, closed 4-manifold M has a spin structure, then the signature of its intersection form, a quadratic form on the second cohomology group , is divisible by 16. The theorem is named for Vladimir Rokhlin, who proved it in 1952.
In mathematics, the spinor concept as specialised to three dimensions can be treated by means of the traditional notions of dot product and cross product. This is part of the detailed algebraic discussion of the rotation group SO(3).
In the theory of Lorentzian manifolds, spherically symmetric spacetimes admit a family of nested round spheres. In such a spacetime, a particularly important kind of coordinate chart is the Schwarzschild chart, a kind of polar spherical coordinate chart on a static and spherically symmetric spacetime, which is adapted to these nested round spheres. The defining characteristic of Schwarzschild chart is that the radial coordinate possesses a natural geometric interpretation in terms of the surface area and Gaussian curvature of each sphere. However, radial distances and angles are not accurately represented.
In physics, particularly in quantum field theory, the Weyl equation is a relativistic wave equation for describing massless spin-1/2 particles called Weyl fermions. The equation is named after Hermann Weyl. The Weyl fermions are one of the three possible types of elementary fermions, the other two being the Dirac and the Majorana fermions.
Symmetries in quantum mechanics describe features of spacetime and particles which are unchanged under some transformation, in the context of quantum mechanics, relativistic quantum mechanics and quantum field theory, and with applications in the mathematical formulation of the standard model and condensed matter physics. In general, symmetry in physics, invariance, and conservation laws, are fundamentally important constraints for formulating physical theories and models. In practice, they are powerful methods for solving problems and predicting what can happen. While conservation laws do not always give the answer to the problem directly, they form the correct constraints and the first steps to solving a multitude of problems.