Telephone keypad

Last updated
A telephone keypad using the ITU E.161 standard. Telephone-keypad2.svg
A telephone keypad using the ITU E.161 standard.

A telephone keypad is a keypad installed on a push-button telephone or similar telecommunication device for dialing a telephone number. It was standardized when the dual-tone multi-frequency signaling (DTMF) system was developed in the Bell System in the United States in the 1960s that replaced rotary dialing originally developed in electromechanical switching systems. [1] Because of the installed abundance of rotary dial equipment well into the 1990s, many telephone keypads were also designed to produce loop-disconnect pulses electronically, and some could be optionally switched to produce either DTMF or pulses.

Contents

The development of the modern telephone keypad is attributed to research in the 1950s by Richard Deininger under the directorship of John Karlin at the Human Factors Engineering Department of Bell Labs. [2] [3] The modern keypad is laid out in a rectangular array of twelve push buttons arranged as four rows and three columns of keys. For military applications, a fourth, right-most column of keys was added for priority signaling in the Autovon system in the 1960s. Initially, between 1963 and 1968, the keypads for civilian subscriber service omitting the lower left and lower right keys that commonly are assigned to the star (✻) and number sign (#) signals, respectively. These keys were added to provide signals for anticipated data entry purposes in business applications, but found use in Custom Calling Services (CLASS) features installed in electronic switching systems. [4]

Layout

Telephone with letters on its rotary dial (1950s, UK) Phone from 1950s uk - This one is real.JPG
Telephone with letters on its rotary dial (1950s, UK)

The layout of the digit keys is different from that commonly appearing on calculators and numeric keypads. This layout was chosen after extensive human factors testing at Bell Labs. [3] [5] At the time (late 1950s), mechanical calculators were not widespread, and few people had experience with them. [6] Indeed, calculators were only just starting to settle on a common layout; a 1955 paper states "Of the several calculating devices we have been able to look at... Two other calculators have keysets resembling [the layout that would become the most common layout].... Most other calculators have their keys reading upward in vertical rows of ten," [5] while a 1960 paper, just five years later, refers to today's common calculator layout as "the arrangement frequently found in ten-key adding machines". [3] In any case, Bell Labs testing found that the telephone layout with 1, 2, and 3 in the top row, was slightly faster than the calculator layout with them in the bottom row.

British GPO 726 telephone of 1967 GPO 726 Phone.jpg
British GPO 726 telephone of 1967

The key labeled ✻ was officially named the "star" key. The key labeled # is officially called the "number sign" key, but other names such as "pound", "hash", "hex", "octothorpe", "gate", "lattice", and "square", are common, depending on national or personal preference. The Greek symbols alpha and omega had been planned originally. [7]

These can be used for special functions. For example, in the UK, users can order a 7:30 am alarm call from a BT telephone exchange by dialing: ✻55✻0730#. [8]

Most of the keys also bear letters according to the following system:

A standard telephone keypad Telephone keys.JPG
A standard telephone keypad
NumberLetter
0none (on some telephones, "OPERATOR" or "OPER")
1none (on some older telephones, QZ)
2ABC
3DEF
4GHI
5JKL
6MNO (on some older telephones, MN)
7PQRS (on older telephones, PRS)
8TUV
9WXYZ (on older telephones, WXY)

These letters have been used for multiple purposes. Originally, they referred to the leading letters of telephone exchange names. In the mid-20th century United States, before the switch to All-Number Calling, telephone numbers had seven digits including a two-digit prefix which was expressed in letters rather than digits, e.g.; KL5-5445. The UK telephone numbering system used a similar two-letter code after the initial zero to form the first part of the subscriber trunk dialling code for a region. For example, Aylesbury was assigned 0AY6, which translated into 0296.

The official toll-free hotline for the California Department of Transportation's Adopt-a-Highway program is 1-866-236-7824, but signs advertise the number as 1-866-ADOPTAHWY, with two extra digits, for memorability. MUTCD-CA S32.svg
The official toll-free hotline for the California Department of Transportation's Adopt-a-Highway program is 1-866-236-7824, but signs advertise the number as 1-866-ADOPTAHWY, with two extra digits, for memorability.

The letters have also been used, mainly in the United States, as a technique for remembering telephone numbers easily. For example, an interior decorator might license the telephone number 1-800-724-6837, but advertise it as the more memorable phoneword 1-800-PAINTER. Sometimes businesses advertise a number with a mnemonic word having more letters than there are digits in the phone number. Usually, this means that the caller just stops dialing at seven digits after the area code or that the extra digits are ignored by the central office.

In feature phones the letters on the keys are used for text entry tasks such as text messaging, entering names in the phone book, and browsing the web. To compensate for the smaller number of keys, phones used multi-tap and later predictive text processing to speed up the process. Touchscreen phones have made these input methods obsolete, as screens are typically large enough to show as many virtual buttons as necessary for full text entry.

Key tones

Pressing a single key of a traditional analog telephone keypad produces a telephony signaling event to the remote switching system. For touchtone service, the signal is a dual-tone multi-frequency signaling tone consisting of two simultaneous pure tone sinusoidal frequencies. The row in which the key appears determines the low-frequency component, and the column determines the high-frequency component. For example, pressing key 1 results in a signal composed of tones with frequencies 697 hertz (Hz) and 1209 Hz.

DTMF keypad frequencies (with sound clips)
1209 Hz1336 Hz1477 Hz1633 Hz
697 Hz 1 2 3 A
770 Hz 4 5 6 B
852 Hz 7 8 9 C
941 Hz 0 # D

Letter mapping

A mobile phone keypad with Latin and Japanese characters. Japanese mobile phone keypad.jpg
A mobile phone keypad with Latin and Japanese characters.

In the course of telephone history, the positions of telephone dials, as well as keypads have been associated with various patterns of mapping letters and characters to numbers (keyboard layout).

The system used in Denmark[ failed verification ] was different from that used in the U.K., which was different from the U.S. and Australia. [9] The use of alphanumeric codes for exchanges was abandoned in Europe when international direct dialing was introduced in the 1960s, because, for example, dialing VIC 8900 on a Danish telephone would result in a different number to dialling it on a British telephone. At the same time letters were no longer placed on the dials of new telephones.

Letters did not re-appear on phones in Europe until the introduction of mobile phones, and the layout followed the new international standard ITU E.161/ISO 9995-8. The ITU established an international standard (ITU E.161) in the mid-1990s, and that should be the layout used for any new devices. [10] There is a standard, ETSI ES 202 130, that covers European languages and other languages used in Europe, published by the independent ETSI organisation in 2003 [11] and updated in 2007. [12] Work describing some principles of the standard is available. [13]

Since many newer smartphones, such as the Palm Treo and BlackBerry, have full alphanumeric keyboards instead of the traditional telephone keypads, the user must execute additional steps to dial a number containing convenience letters. On certain BlackBerry devices, a user can press the Alt key, followed by the desired letter, and the device will generate the appropriate DTMF tone. [14]

See also

Related Research Articles

<span class="mw-page-title-main">DTMF</span> Telecommunication signaling system

Dual-tone multi-frequency signaling (DTMF) is a telecommunication signaling system using the voice-frequency band over telephone lines between telephone equipment and other communications devices and switching centers. DTMF was first developed in the Bell System in the United States, and became known under the trademark Touch-Tone for use in push-button telephones supplied to telephone customers, starting in 1963. DTMF is standardized as ITU-T Recommendation Q.23. It is also known in the UK as MF4.

<span class="mw-page-title-main">Rotary dial</span> Component that allows dialing numbers

A rotary dial /ROUteri daial/ is a component of a telephone or a telephone switchboard that implements a signaling technology in telecommunications known as pulse dialing. It is used when initiating a telephone call to transmit the destination telephone number to a telephone exchange.

<span class="mw-page-title-main">Pulse dialing</span>

Pulse dialing is a signaling technology in telecommunications in which a direct current local loop circuit is interrupted according to a defined coding system for each signal transmitted, usually a digit. This lends the method the often used name loop disconnect dialing. In the most common variant of pulse dialing, decadic dialing, each of the ten Arabic numerals are encoded in a sequence of up to ten pulses. The most common version decodes the digits 1 through 9, as one to nine pulses, respectively, and the digit 0 as ten pulses. Historically, the most common device to produce such pulse trains is the rotary dial of the telephone, lending the technology another name, rotary dialing.

Phreaking is a slang term coined to describe the activity of a culture of people who study, experiment with, or explore telecommunication systems, such as equipment and systems connected to public telephone networks. The term phreak is a sensational spelling of the word freak with the ph- from phone, and may also refer to the use of various audio frequencies to manipulate a phone system. Phreak, phreaker, or phone phreak are names used for and by individuals who participate in phreaking.

Signalling System No. 7 (SS7) is a set of telephony signaling protocols developed in the 1970s, which is used to set up and tear down telephone calls in most parts of the world-wide public switched telephone network (PSTN). The protocol also performs number translation, local number portability, prepaid billing, Short Message Service (SMS), and other services.

A dial tone is a telephony signal sent by a telephone exchange or private branch exchange (PBX) to a terminating device, such as a telephone, when an off-hook condition is detected. It indicates that the exchange is working and is ready to initiate a telephone call. The tone stops when the first dialed digit is recognized. If no digits are forthcoming, the partial dial procedure is invoked, often eliciting a special information tone and an intercept message, followed by the off-hook tone, requiring the caller to hang up and redial.

<span class="mw-page-title-main">Blue box</span> Device for hacking telephone networks

A blue box is an electronic device that produces tones used to generate the in-band signaling tones formerly used within the North American long-distance telephone network to send line status and called number information over voice circuits. This allowed an illicit user, referred to as a "phreaker", to place long-distance calls, without using the network's user facilities, that would be billed to another number or dismissed entirely as an incomplete call. A number of similar "color boxes" were also created to control other aspects of the phone network.

<span class="mw-page-title-main">Telephone call</span> Connection between two or more people over a telephone network

A telephone call or telephone conversation, also known as a phone call or voice call, is a connection over a telephone network between the called party and the calling party. Telephone calls started in the late 19th century. As technology has improved, a majority of telephone calls are made over a cellular network through mobile phones or over the internet with Voice over IP. Telephone calls are typically used for real-time conversation between two or more parties, especially when the parties cannot meet in person.

In telephony, multi-frequency signaling (MF) is a type of signaling that was introduced by the Bell System after World War II. It uses a combination of audible tones for address transport and supervision signaling on trunk lines between central offices. The signaling is sent in-band over the same channel as the bearer channel used for voice traffic.

In telecommunications, in-band signaling is the sending of control information within the same band or channel used for data such as voice or video. This is in contrast to out-of-band signaling which is sent over a different channel, or even over a separate network. In-band signals may often be heard by telephony participants, while out-of-band signals are inaccessible to the user. The term is also used more generally, for example of computer data files that include both literal data, and metadata and/or instructions for how to process the literal data.

E.123 is an international standard by the standardization union (ITU-T), entitled Notation for national and international telephone numbers, e-mail addresses and web addresses. It provides guidelines for the presentation of telephone numbers, email addresses, and web addresses in print, on letterheads, and similar purposes.

<span class="mw-page-title-main">Improved Mobile Telephone Service</span> Early mobile telephone standard

The Improved Mobile Telephone Service (IMTS) was a pre-cellular VHF/UHF radio system which linked to the public telephone network. IMTS was the radiotelephone equivalent of land dial phone service. Introduced in 1964, it replaced Mobile Telephone Service (MTS) and improved on most MTS systems by offering direct-dial rather than connections through a live operator, and full-duplex operation so both parties could talk at the same time.

<span class="mw-page-title-main">Model 500 telephone</span> Type of American telephones

The Western Electric model 500 telephone series was the standard domestic desk telephone set issued by the Bell System in North America from 1950 through the 1984 Bell System divestiture. Millions of model 500-series phones were produced and were present in most homes in North America. Many are still in use today because of their durability and ample availability. Its modular construction compared to previous types simplified manufacture and repair, and facilitated a large number of variants with added features.

In telephony, call progress tones are audible tones that provide an indication of the status of a telephone call to the user. The tones are generated by a central office or a private branch exchange (PBX) to the calling party.

<span class="mw-page-title-main">Keypad</span> Input device

A keypad is a block or pad of buttons set with an arrangement of digits, symbols, or alphabetical letters. Pads mostly containing numbers and used with computers are numeric keypads. Keypads are found on devices which require mainly numeric input such as calculators, television remotes, push-button telephones, vending machines, ATMs, point of sale terminals, combination locks, safes, and digital door locks. Many devices follow the E.161 standard for their arrangement.

<span class="mw-page-title-main">E.161</span> ITU-T Recommendation

E.161 is an ITU-T Recommendation that defines the arrangement of digits, letters, and symbols on telephone keypads and rotary dials. It also defines the recommended mapping between the basic Latin alphabet and digits. Uses for this mapping include:

<span class="mw-page-title-main">Telephone number</span> Sequence of digits assigned to a telephone subscription

A telephone number is a sequence of digits assigned to a landline telephone subscriber station connected to a telephone line or to a wireless electronic telephony device, such as a radio telephone or a mobile telephone, or to other devices for data transmission via the public switched telephone network (PSTN) or other public and private networks.

<span class="mw-page-title-main">Push-button telephone</span> Telephone which has buttons or keys for dialing

The push-button telephone is a telephone that has buttons or keys for dialing a telephone number, in contrast to having a rotary dial as in earlier telephone instruments.

<span class="mw-page-title-main">Telephone exchange</span> Interconnects telephones for calls

A telephone exchange, also known as a telephone switch or central office, is a crucial component in the public switched telephone network (PSTN) or large enterprise telecommunications systems. It facilitates the interconnection of telephone subscriber lines or digital system virtual circuits, enabling telephone calls between subscribers.

Dialling is the action of initiating a telephone call by operating the rotary dial or the telephone keypad of a telephone.

References

  1. Agogino, Alice (November 18, 2009). "Engineering Education "Today in History" Blog: Bell Telephone introduces push button telephone". Engineering Pathway. Archived from the original on January 27, 2013.
  2. B.L. Hanson, A Brief History of Applied Behavioral Science at Bell Laboratories, Bell System Technical Journal 62(6) 1571–1590 (July–August 1983), p.1578
  3. 1 2 3 Deininger, R. L. (1960-02-16). "Human Factors Engineering Studies of the Design and Use of Pushbutton Telephone Sets". Bell System Technical Journal. 39 (4): 995–1012. doi:10.1002/j.1538-7305.1960.tb04447.x.
  4. D.P. Worrall, New Custom Calling Services, Bell System Technical Journal 61(5) 821–839 (May–June 1982)
  5. 1 2 Lutz, Mary Champion; Chapanis, Alphonse (October 1955). "Expected Locations of Digits and Letters on Ten-Button Keysets". Journal of Applied Psychology. 39 (5): 314–317. doi:10.1037/h0048722.
  6. Brady Haran (producer), Sarah Wiseman (interviewee) (2013-08-29). Phone Numbers - Numberphile. Archived from the original on 2021-12-12. Retrieved 2016-05-11.
  7. Koten, John F., " *# ", WSJ.Money Magazine, Issue 5, p. 22 (Spring 2014). The star and number sign were likely first suggested by John A. "Jack" Koten (1929-2014), a corporate communications specialist with Bell Labs in Chicago, reasoning that the new keys would be easier to explain to a public already familiar with typewriter symbols.
  8. "Reminder Call Instructions | BT Business".
  9. Phone Key Pads Archived 2015-03-15 at the Wayback Machine
  10. E.161 : Arrangement of digits, letters and symbols on telephones and other devices that can be used for gaining access to a telephone network
  11. ETSI (2003-10-29), ETSI ES 202 130 Ver. 1.1.1: Human Factors (HF); User Interfaces; Character repertoires, ordering rules and assignments to the 12-key telephone keypad, ETSI, retrieved 2011-11-03
  12. ETSI (2007-09-06), ETSI ES 202 130 Ver. 2.1.2: Human Factors (HF); User Interfaces; Character repertoires, orderings and assignments to the 12-key telephone keypad (for European languages and other languages used in Europe), ETSI
  13. Böcker, Martin; von Niman, Bruno; Larsson, Karl Ivar (2006-09-01), "Increasing text-entry usability in mobile devices for languages used in Europe", Interactions, 13 (5): 30, CiteSeerX   10.1.1.125.7511 , doi:10.1145/1151314.1151336, ISSN   1072-5520, S2CID   20736144
  14. Blackberry Tips, PC World, October 2005.