Telomestatin

Last updated
Telomestatin
Telomestatin.png
Names
Preferred IUPAC name
(84R)-65,75-Dimethyl-84,85-dihydro-1(2,4),2,3,4,5,6,7(4,2)-heptakis([1,3]oxazolo)-8(2,4)-[1,3]thiazolocyclooctaphane
Identifiers
3D model (JSmol)
ChEMBL
PubChem CID
  • CC1=C(C2=NC(C3=NC(C4=NC(C5=NC(C6=NC(C7=NC(C8=N[C@@]9([H])CS8)=CO7)=CO6)=CO5)=CO4)=CO3)=C(C)O2)N=C9O1
Properties
C26H14N8O7S
Molar mass 582.51 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)
Infobox references

Telomestatin is a macrocyclic chemical compound that acts by inhibiting the telomerase activity of in vitro cancer cells. [1] It was first isolated from the bacteria Streptomyces anulatus . [1] Telomestatin induces the formation of basket-type G-quadruplex (G4) structures from hybrid-type G-quadruplexes in the telomeric region. Upon formation of G4 structure there will be a decrease in the activity of the telomerase, which is involved in the replication of the telomeres and as a result the cell dies due to Hayflick type senescence.

Related Research Articles

Telomerase Telomere-restoring protein active in the most rapidly dividing cells

Telomerase, also called terminal transferase, is a ribonucleoprotein that adds a species-dependent telomere repeat sequence to the 3' end of telomeres. A telomere is a region of repetitive sequences at each end of the chromosomes of most eukaryotes. Telomeres protect the end of the chromosome from DNA damage or from fusion with neighbouring chromosomes. The fruit fly Drosophila melanogaster lacks telomerase, but instead uses retrotransposons to maintain telomeres.

DD-transpeptidase

DD-transpeptidase is a bacterial enzyme that catalyzes the transfer of the R-L-aca-D-alanyl moiety of R-L-aca-D-alanyl-D-alanine carbonyl donors to the γ-OH of their active-site serine and from this to a final acceptor. It is involved in bacterial cell wall biosynthesis, namely, the transpeptidation that crosslinks the peptide side chains of peptidoglycan strands.

Clavulanic acid

Clavulanic acid is a β-lactam drug that functions as a mechanism-based β-lactamase inhibitor. While not effective by itself as an antibiotic, when combined with penicillin-group antibiotics, it can overcome antibiotic resistance in bacteria that secrete β-lactamase, which otherwise inactivates most penicillins.

Novobiocin

Novobiocin, also known as albamycin or cathomycin, is an aminocoumarin antibiotic that is produced by the actinomycete Streptomyces niveus, which has recently been identified as a subjective synonym for S. spheroides a member of the order Actinobacteria. Other aminocoumarin antibiotics include clorobiocin and coumermycin A1. Novobiocin was first reported in the mid-1950s.

Geldanamycin Chemical compound

Geldanamycin is a 1,4-benzoquinone ansamycin antitumor antibiotic that inhibits the function of Hsp90 by binding to the unusual ADP/ATP-binding pocket of the protein. HSP90 client proteins play important roles in the regulation of the cell cycle, cell growth, cell survival, apoptosis, angiogenesis and oncogenesis.

G-quadruplex Structure in molecular biology

In molecular biology, G-quadruplex secondary structures (G4) are formed in nucleic acids by sequences that are rich in guanine. They are helical in shape and contain guanine tetrads that can form from one, two or four strands. The unimolecular forms often occur naturally near the ends of the chromosomes, better known as the telomeric regions, and in transcriptional regulatory regions of multiple genes, both in microbes and across vertebrates including oncogenes in humans. Four guanine bases can associate through Hoogsteen hydrogen bonding to form a square planar structure called a guanine tetrad, and two or more guanine tetrads can stack on top of each other to form a G-quadruplex.

Helenalin Chemical compound

Helenalin, or (-)-4-Hydroxy-4a,8-dimethyl-3,3a,4a,7a,8,9,9a-octahydroazuleno[6,5-b]furan-2,5-dione, is a toxic sesquiterpene lactone which can be found in several plants such as Arnica montana and Arnica chamissonis subsp. foliosa. Helenalin is responsible for the toxicity of the Arnica spp. Although toxic, helenalin possesses some in vitro anti-inflammatory and anti-neoplastic effects. Helenalin can inhibit certain enzymes, such as 5-lipoxygenase and leukotriene C4 synthase. For this reason the compound or its derivatives may have potential medical applications.

Staurosporine

Staurosporine is a natural product originally isolated in 1977 from the bacterium Streptomyces staurosporeus. It was the first of over 50 alkaloids to be isolated with this type of bis-indole chemical structure. The chemical structure of staurosporine was elucidated by X-ray analysis of a single crystal and the absolute stereochemical configuration by the same method in 1994.

Telomerase reverse transcriptase Catalytic subunit of the enzyme telomerase

Telomerase reverse transcriptase is a catalytic subunit of the enzyme telomerase, which, together with the telomerase RNA component (TERC), comprises the most important unit of the telomerase complex.

Oleandomycin

Oleandomycin is a macrolide antibiotic. It is synthesized from strains of Streptomyces antibioticus. It is weaker than erythromycin.

Telomerase RNA component NcRNA found in eukaryotes

Telomerase RNA component, also known as TR, TER or TERC, is an ncRNA found in eukaryotes that is a component of telomerase, the enzyme used to extend telomeres. TERC serves as a template for telomere replication by telomerase. Telomerase RNAs differ greatly in sequence and structure between vertebrates, ciliates and yeasts, but they share a 5' pseudoknot structure close to the template sequence. The vertebrate telomerase RNAs have a 3' H/ACA snoRNA-like domain.

PINX1

PIN2/TERF1-interacting telomerase inhibitor 1, also known as PINX1, is a human gene. PINX1 is also known as PIN2 interacting protein 1. PINX1 is a telomerase inhibitor and a possible tumor suppressor.

Blasticidin S is an antibiotic that is used in biology research for selecting cells in cell culture. Cells of interest can express the blasticidin resistance genes BSD or bsr, and can then survive treatment with the antibiotic. Blasticidin S is a nucleoside analogue antibiotic, resembling the nucleoside cytidine. Blasticidin works against human cells, fungi, and bacteria, all by disrupting protein translation. It was originally described by Japanese researchers in the 1950s seeking antibiotics for rice blast fungus.

Indolocarbazole

Indolocarbazoles (ICZs) are a class of compounds that are under current study due to their potential as anti-cancer drugs and the prospective number of derivatives and uses found from the basic backbone alone. First isolated in 1977, a wide range of structures and derivatives have been found or developed throughout the world. Due to the extensive number of structures available, this review will focus on the more important groups here while covering their occurrence, biological activity, biosynthesis, and laboratory synthesis.

Anthramycin Chemical compound

Anthramycin is a pyrrolobenzodiazepine antibiotic with antitumor activity. First derived from the thermophilic anctinomycete Streptomyces refuineus by M. D. Tendler and S Korman in the 1950s, it was first successfully synthesized in a laboratory setting by Leimgruber et al. in 1965. Due to the unstable nature of the chemical structure, characterization of the species was done on its epimer, anthrmycin-11-methyl-ether. This derivative can be formed by recrystallization of anthramycin from hot methanol.

Telomeric repeat–containing RNA Long non-coding RNA transcribed from telomeres

Telomeric repeat-containing RNA (TERRA) is a long non-coding RNA transcribed from telomeres - repetitive nucleotide regions found on the ends of chromosomes that function to protect DNA from deterioration or fusion with neighboring chromosomes. TERRA has been shown to be ubiquitously expressed in almost all cell types containing linear chromosomes - including humans, mice, and yeasts. While the exact function of TERRA is still an active area of research, it is generally believed to play a role in regulating telomerase activity as well as maintaining the heterochromatic state at the ends of chromosomes. TERRA interaction with other associated telomeric proteins has also been shown to help regulate telomere integrity in a length-dependent manner.

Cyclothiazomycin Chemical compound

The cyclothiazomycins are a group of natural products, classified as thiopeptides, which are produced by various Streptomyces species of bacteria.

Streptomyces anulatus is a bacterium species from the genus of Streptomyces which has been isolated from soil. Streptomyces anulatus produces cactinomycin, endophenazine A, endophenazine B, tubermycin B, endophenazine C, epocarbazolin A, epocarbazolin B, dextranase, telomestatin and actinomycin C.

Kaitocephalin Chemical compound

Kaitocephalin is a non-selective ionotropic glutamate receptor antagonist, meaning it blocks the action of the neurotransmitter glutamate. It is produced by the fungus Eupenicillium shearii. Although similar molecules have been produced synthetically, kaitocephalin is the only known naturally occurring glutamate receptor antagonist. There is some evidence that kaitocephalin can protect the brain and central nervous system, so it is said to have neuroprotective properties. Kaitocephalin protects neurons by inhibiting excitotoxicity, a mechanism which causes cell death by overloading neurons with glutamate. Because of this, it is of interest as a potential scaffold for drug development. Drugs based on kaitocephalin may be useful in treating neurological conditions, including Alzheimer's, amyotrophic lateral sclerosis (ALS), and stroke.

i-motif DNA, short for intercalated-motif DNA, are cytosine-rich four-stranded quadruplex DNA structures, similar to the G-quadruplex structures that are formed in guanine-rich regions of DNA.

References

  1. 1 2 Shin-ya, Kazuo; Wierzba, Konstanty; Matsuo, Ken-ichi; Ohtani, Toshio; Yamada, Yuji; Furihata, Kazuo; Hayakawa, Yoichi; Seto, Haruo (2001). "Telomestatin, a novel telomerase inhibitor from Streptomyces anulatus". Journal of the American Chemical Society. 123 (6): 1262–1263. doi:10.1021/ja005780q. PMID   11456694.