Tesla principle

Last updated

Historically, the term Tesla principle was used to describe (amongst other things) certain reversible processes invented by Nikola Tesla. [1] However, this phrase is no longer in conventional use. It was developed during Tesla's research in alternating currents where the current's magnitude and direction varied cyclically.

A reversible process in engineering is a process or operation of a system or device such that a net reverse in operation will accomplish the converse of the original function. The principle was that some systems could be reversed and operated in a complementary manner. During a demonstration of the Tesla turbine, the disks revolved and machinery fastened to the shaft was operated by the engine. If the turbine's operation was reversed, the disks acted as a pump. [2]

Related Research Articles

Heat engine System that converts heat or thermal energy to mechanical work

In thermodynamics and engineering, a heat engine is a system that converts heat or thermal energy to mechanical energy, which can then be used to do mechanical work. It does this by bringing a working substance from a higher state temperature to a lower state temperature. A heat source generates thermal energy that brings the working substance to the high temperature state. The working substance generates work in the working body of the engine while transferring heat to the colder sink until it reaches a low temperature state. During this process some of the thermal energy is converted into work by exploiting the properties of the working substance. The working substance can be any system with a non-zero heat capacity, but it usually is a gas or liquid. During this process, some heat is normally lost to the surroundings and is not converted to work. Also, some energy is unusable because of friction and drag.

Nicolas Léonard Sadi Carnot French physicist, the "father of thermodynamics" (1796–1832)

Sous-lieutenantNicolas Léonard Sadi Carnot was a French mechanical engineer in the French Army, military scientist and physicist, often described as the "father of thermodynamics." Like Copernicus, he published only one book, the Reflections on the Motive Power of Fire, in which he expressed, at the age of 27 years, the first successful theory of the maximum efficiency of heat engines. In this work he laid the foundations of an entirely new discipline, thermodynamics. Carnot's work attracted little attention during his lifetime, but it was later used by Rudolf Clausius and Lord Kelvin to formalize the second law of thermodynamics and define the concept of entropy. His father used the suffix Sadi to name him because of his intense interest in the character of Saadi Shirazi, a well-known Iranian poet.

Steam turbine type of turbine device which uses steam from a boiler to rotate the turbine blades

A steam turbine is a device that extracts thermal energy from pressurized steam and uses it to do mechanical work on a rotating output shaft. Its modern manifestation was invented by Charles Parsons in 1884.

Tesla turbine type of turbine

The Tesla turbine is a bladeless centripetal flow turbine patented by Nikola Tesla in 1913. It is referred to as a bladeless turbine. The Tesla turbine is also known as the boundary-layer turbine, cohesion-type turbine, and Prandtl-layer turbine because it uses the boundary-layer effect and not a fluid impinging upon the blades as in a conventional turbine. Bioengineering researchers have referred to it as a multiple-disk centrifugal pump. One of Tesla's desires for implementation of this turbine was for geothermal power, which was described in Our Future Motive Power.

George Westinghouse 19th century American engineer and businessman

George Westinghouse Jr. was an American entrepreneur and engineer based in Pennsylvania who created the railway air brake and was a pioneer of the electrical industry, receiving his first patent at the age of 19. Westinghouse saw the potential of using alternating current for electric power distribution in the early 1880s and put all his resources into developing and marketing it. This put Westinghouse's business in direct competition with Thomas Edison, who marketed direct current for electric power distribution. In 1911 Westinghouse received the AIEE's Edison Medal "For meritorious achievement in connection with the development of the alternating current system."

Electric generator device that converts other energy to electrical energy

In electricity generation, a generator is a device that converts motive power into electrical power for use in an external circuit. Sources of mechanical energy include steam turbines, gas turbines, water turbines, internal combustion engines, wind turbines and even hand cranks. The first electromagnetic generator, the Faraday disk, was invented in 1831 by British scientist Michael Faraday. Generators provide nearly all of the power for electric power grids.

Second law of thermodynamics Law of physics

The second law of thermodynamics states that the total entropy of an isolated system can never decrease over time, and is constant if and only if all processes are reversible. Isolated systems spontaneously evolve towards thermodynamic equilibrium, the state with maximum entropy.

Starter (engine) electric motor used to start an internal combustion engine

A starter is a device used to rotate (crank) an internal-combustion engine so as to initiate the engine's operation under its own power. Starters can be electric, pneumatic, or hydraulic. In the case of very large engines, the starter can even be another internal-combustion engine.

Reversible process (thermodynamics) process which can be "reversed" by changing some parameter of it/system

In thermodynamics, a reversible process is a process whose direction can be returned to its original position by inducing infinitesimal changes to some property of the system via its surroundings. Throughout the entire reversible process, the system is in thermodynamic equilibrium with its surroundings. Having been reversed, it leaves no change in either the system or the surroundings. Since it would take an infinite amount of time for the reversible process to finish, perfectly reversible processes are impossible. However, if the system undergoing the changes responds much faster than the applied change, the deviation from reversibility may be negligible. In a reversible cycle, a cyclical reversible process, the system and its surroundings will be returned to their original states if one half cycle is followed by the other half cycle.

Compressor Mechanical device that increases the pressure of a gas by reducing its volume

A compressor is a mechanical device that increases the pressure of a gas by reducing its volume. An air compressor is a specific type of gas compressor.

Electrification is the process of powering by electricity and, in many contexts, the introduction of such power by changing over from an earlier power source. The broad meaning of the term, such as in the history of technology, economic history, and economic development, usually applies to a region or national economy. Broadly speaking, electrification was the build-out of the electricity generation and electric power distribution systems that occurred in Britain, the United States, and other now-developed countries from the mid-1880s until around 1950 and is still in progress in rural areas in some developing countries. This included the transition in manufacturing from line shaft and belt drive using steam engines and water power to electric motors.

Irreversible process process that is not reversible

In science, a process that is not reversible is called irreversible. This concept arises frequently in thermodynamics.

Engine room propulsion machinery spaces of the vessel

On a ship, the engine room (ER) is the compartment where the machinery for marine propulsion is located. To increase a vessel's safety and chances of surviving damage, the machinery necessary for the ship's operation may be segregated into various spaces. The engine room is generally the largest physical compartment of the machinery space. It houses the vessel's prime mover, usually some variations of a heat engine. On some ships, there may be more than one engine room, such as forward and aft, or port or starboard engine rooms, or may be simply numbered.

Reversibility can refer to:

Thermodynamic cycle linked sequence of thermodynamic processes that involve transfer of heat and work into and out of the system,while varying pressure, temperature, and other state variables within the system, and that eventually returns the system to its initial state

A thermodynamic cycle consists of a linked sequence of thermodynamic processes that involve transfer of heat and work into and out of the system, while varying pressure, temperature, and other state variables within the system, and that eventually returns the system to its initial state. In the process of passing through a cycle, the working fluid (system) may convert heat from a warm source into useful work, and dispose of the remaining heat to a cold sink, thereby acting as a heat engine. Conversely, the cycle may be reversed and use work to move heat from a cold source and transfer it to a warm sink thereby acting as a heat pump. At every point in the cycle, the system is in thermodynamic equilibrium, so the cycle is reversible.

Carnot cycle Theoretical thermodynamic cycle proposed by Nicolas Leonard Sadi Carnot in 1824

The Carnot cycle is a theoretical ideal thermodynamic cycle proposed by French physicist Sadi Carnot in 1824 and expanded upon by others in the 1830s and 1840s. It provides an upper limit on the efficiency that any classical thermodynamic engine can achieve during the conversion of heat into work, or conversely, the efficiency of a refrigeration system in creating a temperature difference by the application of work to the system. It is not an actual thermodynamic cycle but is a theoretical construct.

Heat pump and refrigeration cycle Mathematical models of heat pumps and refrigeration

Thermodynamic heat pump cycles or refrigeration cycles are the conceptual and mathematical models for heat pump, air conditioning and refrigeration systems. A heat pump is a mechanical system that allows for the transmission of heat from one location at a lower temperature to another location at a higher temperature. Thus a heat pump may be thought of as a "heater" if the objective is to warm the heat sink, or a "refrigerator" or “cooler” if the objective is to cool the heat source. In either case, the operating principles are close. Heat is moved from a cold place to a warm place.

A liquid nitrogen vehicle is powered by liquid nitrogen, which is stored in a tank. Traditional nitrogen engine designs work by heating the liquid nitrogen in a heat exchanger, extracting heat from the ambient air and using the resulting pressurized gas to operate a piston or rotary motor. Vehicles propelled by liquid nitrogen have been demonstrated, but are not used commercially. One such vehicle, Liquid Air was demonstrated in 1902.

Internal combustion engine Engine in which the combustion of a fuel occurs with an oxidizer in a combustion chamber

An internal combustion engine (ICE) is a heat engine in which the combustion of a fuel occurs with an oxidizer in a combustion chamber that is an integral part of the working fluid flow circuit. In an internal combustion engine, the expansion of the high-temperature and high-pressure gases produced by combustion applies direct force to some component of the engine. The force is applied typically to pistons, turbine blades, rotor or a nozzle. This force moves the component over a distance, transforming chemical energy into useful work.

References

  1. Electrical Experimenter , January 1919. p. 615.
  2. "Tesla's New Monarch of Machines". New York Herald Tribune, Oct. 15, 1911. (Available online. Tesla Engine Builders Association. )