Tetrakis(acetonitrile)copper(I) tetrafluoroborate

Last updated
Tetrakis(acetonitrile)copper(I) tetrafluoroborate
Tetrakis acetonitril copper tetrafluoroborate.svg
Identifiers
PubChem CID
Properties
C8H12BCuF4N4
Molar mass 314.56 g·mol −1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Tetrakis(acetonitrile)copper(I) tetrafluoroborate is a complex compound of copper with acetonitrile as the ligand and tetrafluoroborate as the counterion.

Contents

Preparation

Tetrakis(acetonitrile)copper(I) tetrafluoroborate can be prepared starting from nitrosyl tetrafluoroborate, which is obtained from dinitrogen tetroxide and tetrafluoroboric acid. The nitrosyl salt is then reacted with metallic copper in acetonitrile, initially producing a green-blue copper(II) complex. This complex is reduced to the copper(I) complex by further reaction with metallic copper. By boiling with additional copper powder until decolorization, the copper(I) complex is obtained. [1]

Properties

Tetrakis(acetonitrile)copper(I) tetrafluoroborate forms colorless crystals in the orthorhombic crystal system in the space group Pna21 with the lattice parameters a = 23.882 Å; b = 8.3285 Å; c = 20.338 Å, and twelve unit cells. The compound is isomorphous with tetrakis(acetonitrile)copper(I) perchlorate and tetrakis(acetonitrile)silver(I) perchlorate. [2]

Use

Tetrakis(acetonitrile)copper(I) tetrafluoroborate can be reacted with methoxyisobutyl isonitrile to produce Tetrakis(methoxyisobutyl isonitrile)copper(I) tetrafluoroborate. [3] This compound is used to produce technetium(99mTc)-sestamibi. [4]

See also

Related Research Articles

Anions that interact weakly with cations are termed non-coordinating anions, although a more accurate term is weakly coordinating anion. Non-coordinating anions are useful in studying the reactivity of electrophilic cations. They are commonly found as counterions for cationic metal complexes with an unsaturated coordination sphere. These special anions are essential components of homogeneous alkene polymerisation catalysts, where the active catalyst is a coordinatively unsaturated, cationic transition metal complex. For example, they are employed as counterions for the 14 valence electron cations [(C5H5)2ZrR]+ (R = methyl or a growing polyethylene chain). Complexes derived from non-coordinating anions have been used to catalyze hydrogenation, hydrosilylation, oligomerization, and the living polymerization of alkenes. The popularization of non-coordinating anions has contributed to increased understanding of agostic complexes wherein hydrocarbons and hydrogen serve as ligands. Non-coordinating anions are important components of many superacids, which result from the combination of Brønsted acids and Lewis acids.

<span class="mw-page-title-main">Silver perchlorate</span> Chemical compound

Silver perchlorate is the chemical compound with the formula AgClO4. This white solid forms a monohydrate and is mildly deliquescent. It is a useful source of the Ag+ ion, although the presence of perchlorate presents risks. It is used as a catalyst in organic chemistry.

<span class="mw-page-title-main">Diazonium compound</span> Group of organonitrogen compounds

Diazonium compounds or diazonium salts are a group of organic compounds sharing a common functional group [R−N+≡N]X where R can be any organic group, such as an alkyl or an aryl, and X is an inorganic or organic anion, such as a halide. The parent compound where R is hydrogen, is diazenylium.

A salt metathesis reaction is a chemical process involving the exchange of bonds between two reacting chemical species which results in the creation of products with similar or identical bonding affiliations. This reaction is represented by the general scheme:

<span class="mw-page-title-main">Sodium pertechnetate</span> Chemical compound

Sodium pertechnetate is the inorganic compound with the formula NaTcO4. This colourless salt contains the pertechnetate anion, TcO
4
that has slightly distorted tetrahedron symmetry both at 296 K and at 100 K while the coordination polyhedron of the sodium cation is different from typical for scheelite structure. The radioactive 99m
Tc
O
4
anion is an important radiopharmaceutical for diagnostic use. The advantages to 99m
Tc
include its short half-life of 6 hours and the low radiation exposure to the patient, which allow a patient to be injected with activities of more than 30 millicuries. Na[99m
Tc
O
4
]
is a precursor to a variety of derivatives that are used to image different parts of the body.

The triazol-5-ylidenes are a group of persistent carbenes which includes the 1,2,4-triazol-5-ylidene system and the 1,2,3-triazol-5-ylidene system. As opposed to the now ubiquitous NHC systems based on imidazole rings, these carbenes are structured from triazole rings. 1,2,4-triazol-5-ylidene can be thought of as an analog member of the NHC family, with an extra nitrogen in the ring, while 1,2,3-triazol-5-ylidene is better thought of as a mesoionic carbene (MIC). Both isomers of this group of carbenes benefit from enhanced stability, with certain examples exhibiting greater thermal stability, and others extended shelf life.

<span class="mw-page-title-main">Hexafluorophosphate</span> Anion with the chemical formula PF6–

Hexafluorophosphate is an anion with chemical formula of [PF6]. It is an octahedral species that imparts no color to its salts. [PF6] is isoelectronic with sulfur hexafluoride, SF6, and the hexafluorosilicate dianion, [SiF6]2−, and hexafluoroantimonate [SbF6]. In this anion, phosphorus has a valence of 5. Being poorly nucleophilic, hexafluorophosphate is classified as a non-coordinating anion.

Unlike its lighter congeners, the halogen iodine forms a number of stable organic compounds, in which iodine exhibits higher formal oxidation states than -1 or coordination number exceeding 1. These are the hypervalent organoiodines, often called iodanes after the IUPAC rule used to name them.

<span class="mw-page-title-main">Tetrakis(acetonitrile)copper(I) hexafluorophosphate</span> Chemical compound

Tetrakis(acetonitrile)copper(I) hexafluorophosphate is a salt with the formula [Cu(CH3CN)4]PF6. It is a colourless solid that is used in the synthesis of other copper complexes. The cation [Cu(CH3CN)4]+ is a well-known example of a transition metal nitrile complex.

<span class="mw-page-title-main">Tetrakis(3,5-bis(trifluoromethyl)phenyl)borate</span> Chemical compound

Tetrakis[3,5-bis(trifluoromethyl)phenyl]borate is an anion with chemical formula [{3,5-(CF3)2C6H3}4B], which is commonly abbreviated as [BArF4], indicating the presence of fluorinated aryl (ArF) groups. It is sometimes referred to as Kobayashi's anion in honour of Hiroshi Kobayashi who led the team that first synthesised it. More commonly it is affectionately nicknamed "BARF." The BARF ion is also abbreviated BArF24, to distinguish it from the closely related BArF
20
, [(C6F5)4B]. However, for a small group of chemists, the anion is abbreviated as TFPB otherwise, short for Tetrakis[3,5-bis(triFluoromethyl)Phenyl]Borate.

Copper(I) nitrate is a proposed inorganic compound with formula of CuNO3. It has not been characterized by X-ray crystallography. It is the focus of one publication, which describes unsuccessful efforts to isolate the compound. Another nonexistent simple copper(I) compound derived from an oxyanion is cuprous perchlorate. On the other hand, cuprous sulfate is known.

<span class="mw-page-title-main">Brookhart's acid</span> Chemical compound

Brookhart's acid is the salt of the diethyl ether oxonium ion and tetrakis[3,5-bis(trifluoromethyl)phenyl]borate (BAr′4). It is a colorless solid, used as a strong acid. The compound was first reported by Volpe, Grant, and Brookhart in 1992.

<span class="mw-page-title-main">Cadmium tetrafluoroborate</span> Chemical compound

Cadmium tetrafluoroborate is an ionic, chemical compound with the formula Cd(BF4)2. It is a crystalline solid, which is colorless and odorless. Cadmium tetrafluoroborate is most frequently used in the industrial production of high-strength steels, its purpose being to prevent hydrogen absorption, a source of post-production cracking of the metal, in the treated steels. Another application of the chemistry of cadmium tetrafluoroborate is fine tuning of the size of cadmium telluride nanomaterials.

<span class="mw-page-title-main">Titanium perchlorate</span> Chemical compound

Titanium perchlorate is a molecular compound of titanium and perchlorate groups with formula Ti(ClO4)4. Anhydrous titanium perchlorate decomposes explosively at 130 °C and melts at 85 °C with a slight decomposition. It can sublime in a vacuum as low as 70 °C, and can form vapour at up to 120°. Titanium perchlorate is quite volatile. It has density 2.35. It decomposes to TiO2, ClO2 and dioxygen O2 Also TiO(ClO4)2 is formed during decomposition.

<span class="mw-page-title-main">Transition metal nitrile complexes</span> Class of coordination compounds containing nitrile ligands (coordinating via N)

Transition metal nitrile complexes are coordination compounds containing nitrile ligands. Because nitriles are weakly basic, the nitrile ligands in these complexes are often labile.

<span class="mw-page-title-main">Transition metal pyridine complexes</span>

Transition metal pyridine complexes encompass many coordination complexes that contain pyridine as a ligand. Most examples are mixed-ligand complexes. Many variants of pyridine are also known to coordinate to metal ions, such as the methylpyridines, quinolines, and more complex rings.

<span class="mw-page-title-main">Transition metal dithiocarbamate complexes</span>

Transition metal dithiocarbamate complexes are coordination complexes containing one or more dithiocarbamate ligand, which are typically abbreviated R2dtc. Many complexes are known. Several homoleptic derivatives have the formula M(R2dtc)n where n = 2 and 3.

Organotechnetium chemistry is the science of describing the physical properties, synthesis, and reactions of organotechnetium compounds, which are organometallic compounds containing carbon-to-technetium chemical bonds. The most common organotechnetium compounds are coordination complexes used as radiopharmaceutical imaging agents.

Lutetium compounds are compounds formed by the lanthanide metal lutetium (Lu). In these compounds, lutetium generally exhibits the +3 oxidation state, such as LuCl3, Lu2O3 and Lu2(SO4)3. Aqueous solutions of most lutetium salts are colorless and form white crystalline solids upon drying, with the common exception of the iodide. The soluble salts, such as nitrate, sulfate and acetate form hydrates upon crystallization. The oxide, hydroxide, fluoride, carbonate, phosphate and oxalate are insoluble in water.

<span class="mw-page-title-main">Nitrosyl perchlorate</span> Chemical compound

Nitrosyl perchlorate is the inorganic compound with the formula NO(ClO4). A hygroscopic white solid, it is the salt of the nitrosonium cation with the perchlorate anion. It is an oxidant and strong electrophile, but has fallen out of use with the availability of the closely related salt nitrosonium tetrafluoroborate NO(BF4).

References

  1. B. J. Hathaway, D. G. Holah, J. D. Postlethwaite (1961), "630. The preparation and properties of some tetrakis(methylcyanide)copper(I) complexes", Journal of the Chemical Society (Resumed), p. 3215, doi:10.1039/jr9610003215 {{citation}}: CS1 maint: multiple names: authors list (link)
  2. P. G. Jones, O. Crespo (1998-01-15), "Tetrakis(acetonitrile- N )copper(I) Tetrafluoroborate", Acta Crystallographica Section C Crystal Structure Communications, vol. 54, no. 1, pp. 18–20, doi:10.1107/S0108270197013322
  3. Te-Wei Lee, Chang-Shinn Su, Gann Ting (February 1996), "Synthesis, reactivity and 99mTc labelling of 2-alkoxyisobutylisonitrile", Applied Radiation and Isotopes, vol. 47, no. 2, pp. 207–210, doi:10.1016/0969-8043(95)00249-9 {{citation}}: CS1 maint: multiple names: authors list (link)
  4. M. E. Wilson, J. C. Hung, R. J. Gibbons (July 1993), "An alternative method for rapid preparation of 99Tcm-sestamibi:", Nuclear Medicine Communications, vol. 14, no. 1, pp. 544–549, doi:10.1097/00006231-199307000-00005 {{citation}}: CS1 maint: multiple names: authors list (link)