Thiolutin

Last updated
Thiolutin
Thiolutin.png
Thiolutin 3D spacefill.png
Clinical data
Other namesN-(8-methyl-7-oxo-3,4-dithia-8-azabicyclo[3.3.0]octa-1,5-dien-6-yl)acetamide, farcinicin, propiopyvothine, acetopyrrothine
ATC code
  • none
Identifiers
  • N-(4-methyl-5-oxo-4,5-dihydro[1,2]dithiolo[4,3-b]pyrrol-6-yl)acetamide
CAS Number
PubChem CID
ChemSpider
UNII
ChEBI
ChEMBL
CompTox Dashboard (EPA)
ECHA InfoCard 100.163.691 OOjs UI icon edit-ltr-progressive.svg
Chemical and physical data
Formula C8H8N2O2S2
Molar mass 228.28 g·mol−1
3D model (JSmol)
  • O=C(NC/2=C/1\SS\C=C\1N(C\2=O)C)C
  • InChI=1S/C8H8N2O2S2/c1-4(11)9-6-7-5(3-13-14-7)10(2)8(6)12/h3H,1-2H3,(H,9,11) Yes check.svgY
  • Key:MHMRAFONCSQAIA-UHFFFAOYSA-N Yes check.svgY
 X mark.svgNYes check.svgY  (what is this?)    (verify)

Thiolutin is a sulfur-containing antibiotic, which is a potent inhibitor of bacterial and yeast RNA polymerases. [1] It was found to inhibit in vitro RNA synthesis directed by all three yeast RNA polymerases (I, II, and III). Thiolutin is also an inhibitor of mannan and glucan formation in Saccharomyces cerevisiae and used for the analysis of mRNA stability. Studies have shown that thiolutin inhibits adhesion of human umbilical vein endothelial cells (HUVECs) to vitronectin and thus suppresses tumor cell-induced angiogenesis in vivo.

Thiolutin is formed in submerged fermentation by several strains of Streptomycetes luteosporeus . Some sources erroneously specify "aureothricin" as a synonym of thiolutin. Aureothricin is an antibiotic very similar to thiolutin, and is created as a by-product during the thiolutin fermentation. [2]

Related Research Articles

<span class="mw-page-title-main">Enzyme</span> Large biological molecule that acts as a catalyst

Enzymes are proteins that act as biological catalysts by accelerating chemical reactions. The molecules upon which enzymes may act are called substrates, and the enzyme converts the substrates into different molecules known as products. Almost all metabolic processes in the cell need enzyme catalysis in order to occur at rates fast enough to sustain life. Metabolic pathways depend upon enzymes to catalyze individual steps. The study of enzymes is called enzymology and the field of pseudoenzyme analysis recognizes that during evolution, some enzymes have lost the ability to carry out biological catalysis, which is often reflected in their amino acid sequences and unusual 'pseudocatalytic' properties.

<span class="mw-page-title-main">Transcription (biology)</span> Process of copying a segment of DNA into RNA

Transcription is the process of copying a segment of DNA into RNA. The segments of DNA transcribed into RNA molecules that can encode proteins produce messenger RNA (mRNA). Other segments of DNA are transcribed into RNA molecules called non-coding RNAs (ncRNAs).

<span class="mw-page-title-main">Gentamicin</span> Antibiotic medication

Gentamicin is an antibiotic used to treat several types of bacterial infections. This may include bone infections, endocarditis, pelvic inflammatory disease, meningitis, pneumonia, urinary tract infections, and sepsis among others. It is not effective for gonorrhea or chlamydia infections. It can be given intravenously, by intramuscular injection, or topically. Topical formulations may be used in burns or for infections of the outside of the eye. It is often only used for two days until bacterial cultures determine what specific antibiotics the infection is sensitive to. The dose required should be monitored by blood testing.

<span class="mw-page-title-main">Puromycin</span> Chemical compound

Puromycin is an antibiotic protein synthesis inhibitor which causes premature chain termination during translation.

<span class="mw-page-title-main">Rifamycin</span> Group of antibiotics

The rifamycins are a group of antibiotics that are synthesized either naturally by the bacterium Amycolatopsis rifamycinica or artificially. They are a subclass of the larger family of ansamycins. Rifamycins are particularly effective against mycobacteria, and are therefore used to treat tuberculosis, leprosy, and mycobacterium avium complex (MAC) infections.

<span class="mw-page-title-main">Natamycin</span> Antifungal

Natamycin, also known as pimaricin, is an antifungal medication used to treat fungal infections around the eye. This includes infections of the eyelids, conjunctiva, and cornea. It is used as eyedrops. Natamycin is also used in the food industry as a preservative.

<span class="mw-page-title-main">Primary transcript</span> RNA produced by transcription

A primary transcript is the single-stranded ribonucleic acid (RNA) product synthesized by transcription of DNA, and processed to yield various mature RNA products such as mRNAs, tRNAs, and rRNAs. The primary transcripts designated to be mRNAs are modified in preparation for translation. For example, a precursor mRNA (pre-mRNA) is a type of primary transcript that becomes a messenger RNA (mRNA) after processing.

<span class="mw-page-title-main">RNA polymerase II</span> Protein complex that transcribes DNA

RNA polymerase II is a multiprotein complex that transcribes DNA into precursors of messenger RNA (mRNA) and most small nuclear RNA (snRNA) and microRNA. It is one of the three RNAP enzymes found in the nucleus of eukaryotic cells. A 550 kDa complex of 12 subunits, RNAP II is the most studied type of RNA polymerase. A wide range of transcription factors are required for it to bind to upstream gene promoters and begin transcription.

<span class="mw-page-title-main">Cycloheximide</span> Chemical compound

Cycloheximide is a naturally occurring fungicide produced by the bacterium Streptomyces griseus. Cycloheximide exerts its effects by interfering with the translocation step in protein synthesis, thus blocking eukaryotic translational elongation. Cycloheximide is widely used in biomedical research to inhibit protein synthesis in eukaryotic cells studied in vitro. It is inexpensive and works rapidly. Its effects are rapidly reversed by simply removing it from the culture medium.

In molecular biology, a termination factor is a protein that mediates the termination of RNA transcription by recognizing a transcription terminator and causing the release of the newly made mRNA. This is part of the process that regulates the transcription of RNA to preserve gene expression integrity and are present in both eukaryotes and prokaryotes, although the process in bacteria is more widely understood. The most extensively studied and detailed transcriptional termination factor is the Rho (ρ) protein of E. coli.

<span class="mw-page-title-main">Leptomycin</span> Chemical compound

Leptomycins are secondary metabolites produced by Streptomyces spp.

<span class="mw-page-title-main">Chromomycin A3</span> Chemical compound

Chromomycin A3 (CMA3) or Toyomycin is an anthraquinone antibiotic glycoside produced by the fermentation of a certain strain of Streptomyces griseus (No. 7).

The rpoB gene encodes the β subunit of bacterial RNA polymerase and the homologous plastid-encoded RNA polymerase (PEP). It codes for 1342 amino acids in E. coli, making it the second-largest polypeptide in the bacterial cell. It is targeted by the rifamycin family of antibacterials, such as rifampin. Mutations in rpoB that confer resistance to rifamycins do so by altering the protein's drug-binding residues, thereby reducing affinity for these antibiotics.

<span class="mw-page-title-main">Streptolydigin</span> Chemical compound

Streptolydigin (Stl) is an antibiotic that works by inhibiting nucleic acid chain elongation by binding to RNA polymerase, thus inhibiting RNA synthesis inside a cell. Streptolydigin inhibits bacterial RNA polymerase, but not eukaryotic RNA polymerase. It has antibacterial activity against a number of Gram positive bacteria.

Myxopyronins (Myx) are a group of alpha-pyrone antibiotics, which are inhibitors of bacterial RNA polymerase (RNAP). They target switch 1 and switch 2 of the RNAP "switch region". Rifamycins and fidaxomicin also target RNAP, but target different sites in RNAP. Myxopyronins do not have cross-resistance with any other drugs so myxopyronins may be useful to address the growing problem of drug resistance in tuberculosis. They also may be useful in treatment of methicillin-resistant Staphylococcus aureus (MRSA). They are in pre-clinical development and has not yet started clinical trials.

A nucleic acid inhibitor is a type of antibacterial that acts by inhibiting the production of nucleic acids. There are two major classes: DNA inhibitors and RNA inhibitors. The antifungal flucytosine acts in a similar manner.

<span class="mw-page-title-main">Anthramycin</span> Chemical compound

Anthramycin is a pyrrolobenzodiazepine antibiotic with antitumor activity. First derived from the thermophilic actinomycete Streptomyces refuineus by M. D. Tendler and S Korman in the 1950s, it was first successfully synthesized in a laboratory setting by Leimgruber et al. in 1965. Due to the unstable nature of the chemical structure, characterization of the species was done on its epimer, anthrmycin-11-methyl-ether. This derivative can be formed by recrystallization of anthramycin from hot methanol.

<span class="mw-page-title-main">Carbomycin</span> Chemical compound

Carbomycin, also known as magnamycin, is a colorless, optically active crystalline macrolide antibiotic with the molecular formula C42H67N O16. It is derived from the bacterium Streptomyces halstedii and active in inhibiting the growth of Gram-positive bacteria and "certain Mycoplasma strains." Its structure was first proposed by Robert Woodward in 1957 and was subsequently corrected in 1965.

Limosilactobacillus pontis is a rod-shaped, Gram-positive facultatively anaerobic bacterium. Along with other Lactobacillus species, it is capable of converting sugars, such as lactose, into lactic acid. Limosilactobacillus pontis is classified under the phylum Bacillota, class Bacilli, and is a member of the family Lactobacillaceae and is found to be responsible for the fermentation of sourdough, along with many other Lactobacillus species. This microorganism produces lactic acid during the process of fermentation, which gives sourdough bread its characteristic sour taste.

<span class="mw-page-title-main">Industrial microbiology</span>

Industrial microbiology is a branch of biotechnology that applies microbial sciences to create industrial products in mass quantities, often using microbial cell factories. There are multiple ways to manipulate a microorganism in order to increase maximum product yields. Introduction of mutations into an organism may be accomplished by introducing them to mutagens. Another way to increase production is by gene amplification, this is done by the use of plasmids, and vectors. The plasmids and/ or vectors are used to incorporate multiple copies of a specific gene that would allow more enzymes to be produced that eventually cause more product yield. The manipulation of organisms in order to yield a specific product has many applications to the real world like the production of some antibiotics, vitamins, enzymes, amino acids, solvents, alcohol and daily products. Microorganisms play a big role in the industry, with multiple ways to be used. Medicinally, microbes can be used for creating antibiotics in order to treat infection. Microbes can also be used for the food industry as well. Microbes are very useful in creating some of the mass produced products that are consumed by people. The chemical industry also uses microorganisms in order to synthesize amino acids and organic solvents. Microbes can also be used in an agricultural application for use as a biopesticide instead of using dangerous chemicals and or inoculants to help plant proliferation.

References

  1. Kebaara BW, Nielsen LE, Nickerson KW, Atkin AL (Aug 2006). "Determination of mRNA half-lives in Candida albicans using thiolutin as a transcription inhibitor". Genome. 49 (8): 894–9. doi:10.1139/g06-046. PMID   17036064. S2CID   9211151.
  2. Fermentek product page