Thiomargarita

Last updated

Thiomargarita
Sulphide bacteria crop.jpg
Stained micrograph of Thiomargarita namibiensis
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Bacteria
Phylum: Pseudomonadota
Class: Gammaproteobacteria
Order: Thiotrichales
Family: Thiotrichaceae
Genus: Thiomargarita
Schulz et al. 1999 [1] [2]
Species

Thiomargarita is a genus (family Thiotrichaceae) which includes the vacuolate sulfur bacteria species Thiomargarita namibiensis , Candidatus Thiomargarita nelsonii, and Ca. Thiomargarita joergensii. [4] In 2022, scientists working in a Caribbean mangrove discovered an extremely large member of the genus, provisionally named Ca. T. magnifica, whose cells are easily visible to the naked eye at up to 2 centimetres (0.79 in) long. [5]

Thiomargarita namibiensis, collecting nitrate and oxygen in water above the bottom in case of being resuspended and collecting sulfide in the sediments ThiomargaritaFeeding.jpg
Thiomargarita namibiensis, collecting nitrate and oxygen in water above the bottom in case of being resuspended and collecting sulfide in the sediments

Representatives of this genus can be found in a variety of environments that are rich in hydrogen sulfide, including methane seeps, mud volcanoes, brine pools, and organic-rich sediments such as those found beneath the Benguela Current and Humboldt Current. These bacteria are generally considered to be chemolithotrophs that utilize reduced inorganic species of sulfur as metabolic electron donors to produce energy for the fixation of carbon into biomass. Carbon fixation occurs via the Calvin Benson Bassham cycle and possibly the reverse Krebs cycle. [6]

Related Research Articles

<i>Thiomargarita namibiensis</i> Species of bacterium

Thiomargarita namibiensis is a harmless, gram-negative, facultative anaerobic, coccoid bacterium found in the ocean sediments of the continental shelf of Namibia. The genus name Thiomargarita means "sulfur pearl." This refers to the appearance of the cells as they contain microscopic sulfur granules that scatter incident light, lending the cell a pearly luster. This causes the cells to form chains, resembling strings of pearls. The species name namibiensis means "of Namibia".

<span class="mw-page-title-main">Green sulfur bacteria</span> Family of bacteria

The green sulfur bacteria are a phylum, Chlorobiota, of obligately anaerobic photoautotrophic bacteria that metabolize sulfur.

The purple sulfur bacteria (PSB) are part of a group of Pseudomonadota capable of photosynthesis, collectively referred to as purple bacteria. They are anaerobic or microaerophilic, and are often found in stratified water environments including hot springs, stagnant water bodies, as well as microbial mats in intertidal zones. Unlike plants, algae, and cyanobacteria, purple sulfur bacteria do not use water as their reducing agent, and therefore do not produce oxygen. Instead, they can use sulfur in the form of sulfide, or thiosulfate (as well, some species can use H2, Fe2+, or NO2) as the electron donor in their photosynthetic pathways. The sulfur is oxidized to produce granules of elemental sulfur. This, in turn, may be oxidized to form sulfuric acid.

<i>Candidatus Pelagibacter communis</i> Species of bacterium

"Candidatus Pelagibacter", with the single species "Ca. P. communis", was isolated in 2002 and given a specific name, although it has not yet been described as required by the bacteriological code. It is an abundant member of the SAR11 clade in the phylum Alphaproteobacteria. SAR11 members are highly dominant organisms found in both salt and fresh water worldwide and were originally known only from their rRNA genes, first identified in the Sargasso Sea in 1990 by Stephen Giovannoni's laboratory at Oregon State University and later found in oceans worldwide. "Ca. P. communis" and its relatives may be the most abundant organisms in the ocean, and quite possibly the most abundant bacteria in the entire world. It can make up about 25% of all microbial plankton cells, and in the summer they may account for approximately half the cells present in temperate ocean surface water. The total abundance of "Ca. P. communis" and relatives is estimated to be about 2 × 1028 microbes.

Methanotrophs are prokaryotes that metabolize methane as their source of carbon and chemical energy. They are bacteria or archaea, can grow aerobically or anaerobically, and require single-carbon compounds to survive.

Candidatus Epulopiscium is a genus of Gram-positive bacteria that have a symbiotic relationship with surgeonfish. These bacteria are known for their unusually large size, many ranging from 0.2 - 0.7 mm in length. Until the discovery of Thiomargarita namibiensis in 1999, Epulonipiscium species were thought to be the largest bacteria. They are still the largest known heterotrophic bacteria.

<span class="mw-page-title-main">Sulfur-reducing bacteria</span> Microorganisms able to reduce elemental sulfur to hydrogen sulfide

Sulfur-reducing bacteria are microorganisms able to reduce elemental sulfur (S0) to hydrogen sulfide (H2S). These microbes use inorganic sulfur compounds as electron acceptors to sustain several activities such as respiration, conserving energy and growth, in absence of oxygen. The final product of these processes, sulfide, has a considerable influence on the chemistry of the environment and, in addition, is used as electron donor for a large variety of microbial metabolisms. Several types of bacteria and many non-methanogenic archaea can reduce sulfur. Microbial sulfur reduction was already shown in early studies, which highlighted the first proof of S0 reduction in a vibrioid bacterium from mud, with sulfur as electron acceptor and H
2
as electron donor. The first pure cultured species of sulfur-reducing bacteria, Desulfuromonas acetoxidans, was discovered in 1976 and described by Pfennig Norbert and Biebel Hanno as an anaerobic sulfur-reducing and acetate-oxidizing bacterium, not able to reduce sulfate. Only few taxa are true sulfur-reducing bacteria, using sulfur reduction as the only or main catabolic reaction. Normally, they couple this reaction with the oxidation of acetate, succinate or other organic compounds. In general, sulfate-reducing bacteria are able to use both sulfate and elemental sulfur as electron acceptors. Thanks to its abundancy and thermodynamic stability, sulfate is the most studied electron acceptor for anaerobic respiration that involves sulfur compounds. Elemental sulfur, however, is very abundant and important, especially in deep-sea hydrothermal vents, hot springs and other extreme environments, making its isolation more difficult. Some bacteria – such as Proteus, Campylobacter, Pseudomonas and Salmonella – have the ability to reduce sulfur, but can also use oxygen and other terminal electron acceptors.

<i>Nitrobacter</i> Genus of bacteria

Nitrobacter is a genus comprising rod-shaped, gram-negative, and chemoautotrophic bacteria. The name Nitrobacter derives from the Latin neuter gender noun nitrum, nitri, alkalis; the Ancient Greek noun βακτηρία, βακτηρίᾱς, rod. They are non-motile and reproduce via budding or binary fission. Nitrobacter cells are obligate aerobes and have a doubling time of about 13 hours.

<i>Beggiatoa</i> Genus of bacteria

Beggiatoa is a genus of Gammaproteobacteria belonging to the order Thiotrichales, in the Pseudomonadota phylum. These bacteria form colorless filaments composed of cells that can be up to 200 μm in diameter, and are one of the largest prokaryotes on Earth. Beggiatoa are chemolithotrophic sulfur-oxidizers, using reduced sulfur species as an energy source. They live in sulfur-rich environments such as soil, both marine and freshwater, in the deep sea hydrothermal vents, and in polluted marine environments. In association with other sulfur bacteria, e.g. Thiothrix, they can form biofilms that are visible to the naked eye as mats of long white filaments; the white color is due to sulfur globules stored inside the cells.

<span class="mw-page-title-main">Gammaproteobacteria</span> Class of bacteria

Gammaproteobacteria is a class of bacteria in the phylum Pseudomonadota. It contains about 250 genera, which makes it the most genus-rich taxon of the Prokaryotes. Several medically, ecologically, and scientifically important groups of bacteria belong to this class. All members of this class are Gram-negative. It is the most phylogenetically and physiologically diverse class of the Pseudomonadota.

Hydrogen-oxidizing bacteria are a group of facultative autotrophs that can use hydrogen as an electron donor. They can be divided into aerobes and anaerobes. The former use hydrogen as an electron donor and oxygen as an acceptor while the latter use sulphate or nitrogen dioxide as electron acceptors. Species of both types have been isolated from a variety of environments, including fresh waters, sediments, soils, activated sludge, hot springs, hydrothermal vents and percolating water.

<span class="mw-page-title-main">Archaea</span> Domain of organisms

Archaea is a domain of organisms. Traditionally, Archaea only included its prokaryotic members, but this sense has been found to be paraphyletic, as eukaryotes are now known to have evolved from archaea. Even though the domain Archaea includes eukaryotes, the term "archaea" in English still generally refers specifically to prokaryotic members of Archaea. Archaea were initially classified as bacteria, receiving the name archaebacteria, but this term has fallen out of use.

<i>Thioploca</i> Genus of bacteria

Thioploca is a genus of filamentous sulphur-oxidizing bacteria, in the order Thiotrichales. They inhabit both marine and freshwater environments, forming vast communities off the Pacific coast of South America and in other areas with a high organic matter sedimentation and bottom waters rich in nitrate and poor in oxygen. Their cells contain large vacuoles that occupy more than 80% of the cellular volume, used to store nitrate to oxidize sulphur for anaerobic respiration in the absence of oxygen, an important characteristic of the genus. With cell diameters ranging from 15-40 μm, they are some of the largest bacteria known. They provide an important link between the nitrogen and sulphur cycles, because they use both sulfur and nitrogen compounds. They secrete a sheath of mucus which they use as a tunnel to travel between sulphide-containing sediment and nitrate-containing sea water.

CandidatusScalindua wagneri is a Gram-negative coccoid-shaped bacterium that was first isolated from a wastewater treatment plant. This bacterium is an obligate anaerobic chemolithotroph that undergoes anaerobic ammonium oxidation (anammox). It can be used in the wastewater treatment industry in nitrogen reactors to remove nitrogenous wastes from wastewater without contributing to fixed nitrogen loss and greenhouse gas emission.

"Candidatus Scalindua" is a bacterial genus, and a proposed member of the order Planctomycetales. These bacteria lack peptidoglycan in their cell wall and have a compartmentalized cytoplasm. They are ammonium oxidizing bacteria found in marine environments.

Chlorobaculum tepidum, previously known as Chlorobium tepidum, is an anaerobic, thermophilic green sulfur bacteria first isolated from New Zealand. Its cells are gram-negative and non-motile rods of variable length. They contain chlorosomes and bacteriochlorophyll a and c.

<span class="mw-page-title-main">Microbial oxidation of sulfur</span>

Microbial oxidation of sulfur is the oxidation of sulfur by microorganisms to build their structural components. The oxidation of inorganic compounds is the strategy primarily used by chemolithotrophic microorganisms to obtain energy to survive, grow and reproduce. Some inorganic forms of reduced sulfur, mainly sulfide (H2S/HS) and elemental sulfur (S0), can be oxidized by chemolithotrophic sulfur-oxidizing prokaryotes, usually coupled to the reduction of oxygen (O2) or nitrate (NO3). Anaerobic sulfur oxidizers include photolithoautotrophs that obtain their energy from sunlight, hydrogen from sulfide, and carbon from carbon dioxide (CO2).

Thiodictyon is a genus of gram-negative bacterium classified within purple sulfur bacteria (PSB).

CandidatusThiomargarita magnifica is a species of sulfur-oxidizing gammaproteobacteria, found growing underwater on detached leaves of red mangroves from the Guadeloupe archipelago in the Lesser Antilles. This filament-shaped bacteria is the largest known bacterium, with an average length of 10 mm and some individuals reaching 20 millimetres (0.79 in), making the bacteria visible to humans by unaided eye.

<i>Prosthecochloris aestuarii</i> Species of bacterium

Prosthecochloris aestuarii is a green sulfur bacterium in the genus Prosthecochloris. This organism was originally isolated from brackish lagoons located in Sasyk-Sivash and Sivash. They are characterized by the presence of "prosthecae" on their cell surface; the inner part of these appendages house the photosynthetic machinery within chlorosomes, which are characteristic structures of green sulfur bacteria. Additionally, like other green sulfur bacteria, they are Gram-negative, non-motile, and non-spore forming. Of the four major groups of green sulfur bacteria, P. aestuarii serves as the type species for Group 4.

References

  1. "Thiomargarita". NCBI taxonomy. Bethesda, MD: National Center for Biotechnology Information. Retrieved 29 December 2017. Lineage( full ) cellular organisms; Bacteria; Proteobacteria; Gammaproteobacteria; Thiotrichales; Thiotrichaceae
  2. Schulz, H.N., Brinkhoff, T., Ferdelman, T.G., Marine, M.H., Teske, A., Jorgensen, B.B. "Dense populations of a giant sulfur bacterium in Namibian shelf sediments." Science (1999) 284:493-495.
  3. Volland, Jean-Marie; Gonzalez Rizzo, Silvina; Gros, Olivier; Tyml, Tomáš; Ivanova, Natalia; Schulz, Frederik; Goudeau, Danielle; Elisabeth, Nathalie H; Nath, Nandita; Udwary, Daniel; Malmstrom, Rex R; Guidi-Rontani, Chantal; Bolte-Kluge, Susanne; Davies, Karen M; Jean, Maïtena R; Mansot, Jean-Louis; Mouncey, Nigel J; Angert, Esther; Woyke, Tanja; Date, Shailesh V (23 Jun 2022), A centimeter-long bacterium with DNA compartmentalized in membrane-bound organelles, vol. 376, Science, pp. 1453–1458
  4. Salman, Verena; Amann, Rudolf; Girnth, Anne-Christin; Polerecky, Lubos; Bailey, Jake V.; Høgslund, Signe; Jessen, Gerdhard; Pantoja, Silvio; Schulz-Vogt, Heide N. (2011-06-01). "A single-cell sequencing approach to the classification of large, vacuolated sulfur bacteria". Systematic and Applied Microbiology. 34 (4): 243–259. doi:10.1016/j.syapm.2011.02.001. ISSN   1618-0984. PMID   21498017.
  5. Pennisi, Elizabeth (23 February 2022). "Largest bacterium ever discovered has an unexpectedly complex cell". Science. doi:10.1126/science.ada1620 . Retrieved 25 February 2022.
  6. Flood, Beverly E.; Fliss, Palmer; Jones, Daniel S.; Dick, Gregory J.; Jain, Sunit; Kaster, Anne-Kristin; Winkel, Matthias; Mußmann, Marc; Bailey, Jake (2016-01-01). "Single-Cell (Meta-)Genomics of a Dimorphic Candidatus Thiomargarita nelsonii Reveals Genomic Plasticity". Frontiers in Microbiology. 7: 603. doi: 10.3389/fmicb.2016.00603 . PMC   4853749 . PMID   27199933.