Thiuram disulfide

Last updated
General structure of a thiuram disulfide Thiuram-disulfide-2D.png
General structure of a thiuram disulfide

Thiuram disulfides are a class of organosulfur compounds with the formula (R2NCSS)2. Many examples are known, but popular ones include R = Me and R = Et. They are disulfides obtained by oxidation of the dithiocarbamates. These compounds are used in sulfur vulcanization of rubber as well as in the manufacture of pesticides and drugs. They are typically white or pale yellow solids that are soluble in organic solvents. [1]

Contents

Preparation, structure, reactions

Thiuram disulfides are prepared by oxidizing the salts of the corresponding dithiocarbamates (e.g. sodium diethyldithiocarbamate). Typical oxidants employed include chlorine and hydrogen peroxide:

2 R2NCSSNa + Cl2 → (R2NCSS)2 + 2  NaCl

Thiuram disulfides react with Grignard reagents to give esters of dithiocarbamic acid, as in the preparation of methyl dimethyldithiocarbamate: [2]

[Me2NC(S)S]2 + MeMgX → Me2NC(S)SMe + Me2NCS2MgX

The compounds feature planar dithiocarbamate subunits and are linked by an S−S bond of 2.00  Å. The C(S)−N bond is short (1.33 Å), indicative of multiple bonding. The dihedral angle between the two dithiocarbamate subunits approaches 90°. [3]

Structure of tetramethylthiuram disulfide, emphasizing the 90o dihedral angle between the two planar subunits METHUS03skew2.png
Structure of tetramethylthiuram disulfide, emphasizing the 90º dihedral angle between the two planar subunits

Thiuram disulfides are weak oxidants. They can be reduced to dithiocarbamates. Treatment of a thiuram disulfide with triphenylphosphine, or with cyanide salts, yields the corresponding thiuram sulfide:

(R2NCSS)2 + PPh3 → (R2NCS)2S + SPPh3

Chlorination of thiuram disulfide affords the thiocarbamoyl chloride. [4]

Applications

The tetramethyl derivative, known as thiram, is a widely used fungicide. The tetraethyl derivative, known as disulfiram, is commonly used to treat chronic alcoholism. It produces an acute sensitivity to alcohol ingestion by blocking metabolism of acetaldehyde by acetaldehyde dehydrogenase, leading to a higher concentration of the aldehyde in the blood, which in turn produces symptoms of a severe hangover.

Safety

In 2005–06, thiuram mix was the 13th most prevalent allergen in patch tests (3.9%). [5]

Related Research Articles

<span class="mw-page-title-main">Aldehyde</span> Organic compound containing the functional group R−CH=O

In organic chemistry, an aldehyde is an organic compound containing a functional group with the structure R−CH=O. The functional group itself can be referred to as an aldehyde but can also be classified as a formyl group. Aldehydes are a common motif in many chemicals important in technology and biology.

In biochemistry, a disulfide refers to a functional group with the structure R−S−S−R′. The linkage is also called an SS-bond or sometimes a disulfide bridge and is usually derived by the coupling of two thiol groups. In biology, disulfide bridges formed between thiol groups in two cysteine residues are an important component of the secondary and tertiary structure of proteins. Persulfide usually refers to R−S−S−H compounds.

<span class="mw-page-title-main">Organic sulfide</span> Organic compound with an –S– group

In organic chemistry, a sulfide or thioether is an organosulfur functional group with the connectivity R−S−R' as shown on right. Like many other sulfur-containing compounds, volatile sulfides have foul odors. A sulfide is similar to an ether except that it contains a sulfur atom in place of the oxygen. The grouping of oxygen and sulfur in the periodic table suggests that the chemical properties of ethers and sulfides are somewhat similar, though the extent to which this is true in practice varies depending on the application.

<span class="mw-page-title-main">Isothiocyanate</span> Chemical group (–N=C=S)

In organic chemistry, isothiocyanate is the functional group −N=C=S, formed by substituting the oxygen in the isocyanate group with a sulfur. Many natural isothiocyanates from plants are produced by enzymatic conversion of metabolites called glucosinolates. These natural isothiocyanates, such as allyl isothiocyanate, are also known as mustard oils. An artificial isothiocyanate, phenyl isothiocyanate, is used for amino acid sequencing in the Edman degradation.

In organic chemistry, an aryl halide is an aromatic compound in which one or more hydrogen atoms, directly bonded to an aromatic ring are replaced by a halide. The haloarene are different from haloalkanes because they exhibit many differences in methods of preparation and properties. The most important members are the aryl chlorides, but the class of compounds is so broad that there are many derivatives and applications.

<span class="mw-page-title-main">Zinc chloride</span> Chemical compound

Zinc chloride is the name of inorganic chemical compounds with the formula ZnCl2. It forms hydrates. Zinc chloride, anhydrous and its hydrates are colorless or white crystalline solids, and are highly soluble in water. Five hydrates of zinc chloride are known, as well as four forms of anhydrous zinc chloride. This salt is hygroscopic and even deliquescent. Zinc chloride finds wide application in textile processing, metallurgical fluxes, and chemical synthesis. No mineral with this chemical composition is known aside from the very rare mineral simonkolleite, Zn5(OH)8Cl2·H2O.

The Reformatsky reaction is an organic reaction which condenses aldehydes or ketones with α-halo esters using metallic zinc to form β-hydroxy-esters:

Organoselenium chemistry is the science exploring the properties and reactivity of organoselenium compounds, chemical compounds containing carbon-to-selenium chemical bonds. Selenium belongs with oxygen and sulfur to the group 16 elements or chalcogens, and similarities in chemistry are to be expected. Organoselenium compounds are found at trace levels in ambient waters, soils and sediments.

Organophosphorus chemistry is the scientific study of the synthesis and properties of organophosphorus compounds, which are organic compounds containing phosphorus. They are used primarily in pest control as an alternative to chlorinated hydrocarbons that persist in the environment. Some organophosphorus compounds are highly effective insecticides, although some are extremely toxic to humans, including sarin and VX nerve agents.

<span class="mw-page-title-main">Grignard reagent</span> Organometallic compounds used in organic synthesis

A Grignard reagent or Grignard compound is a chemical compound with the general formula R−Mg−X, where X is a halogen and R is an organic group, normally an alkyl or aryl. Two typical examples are methylmagnesium chloride Cl−Mg−CH3 and phenylmagnesium bromide (C6H5)−Mg−Br. They are a subclass of the organomagnesium compounds.

<span class="mw-page-title-main">Diphenyl disulfide</span> Chemical compound

Diphenyl disulfide is the chemical compound with the formula (C6H5S)2. This colorless crystalline material is often abbreviated Ph2S2. It is one of the more commonly encountered organic disulfides in organic synthesis. Minor contamination by thiophenol is responsible for the disagreeable odour associated with this compound.

<span class="mw-page-title-main">Sodium diethyldithiocarbamate</span> Chemical compound

Sodium diethyldithiocarbamate is the organosulfur compound with the formula NaS2CN(C2H5)2. It is a pale yellow, water soluble salt.

<span class="mw-page-title-main">Dithiocarbamate</span> Chemical group (>N–C(=S)–S–)

In organic chemistry, a dithiocarbamate is a functional group with the general formula R2N−C(=S)−S−R and structure >N−C(=S)−S−. It is the analog of a carbamate in which both oxygen atoms are replaced by sulfur atoms.

Unlike its lighter congeners, the halogen iodine forms a number of stable organic compounds, in which iodine exhibits higher formal oxidation states than -1 or coordination number exceeding 1. These are the hypervalent organoiodines, often called iodanes after the IUPAC rule used to name them.

In organic chemistry, thiocarboxylic acids or carbothioic acids are organosulfur compounds related to carboxylic acids by replacement of one of the oxygen atoms with a sulfur atom. Two tautomers are possible: a thione form and a thiol form. These are sometimes also referred to as "carbothioic O-acid" and "carbothioic S-acid" respectively. Of these the thiol form is most common.

<i>N</i>-<i>tert</i>-Butylbenzenesulfinimidoyl chloride Chemical compound

N-tert-Butylbenzenesulfinimidoyl chloride is a useful oxidant for organic synthesis reactions. It is a good electrophile, and the sulfimide S=N bond can be attacked by nucleophiles, such as alkoxides, enolates, and amide ions. The nitrogen atom in the resulting intermediate is basic, and can abstract an α-hydrogen to create a new double bond.

<span class="mw-page-title-main">Barium manganate</span> Chemical compound

Barium manganate is an inorganic compound with the formula BaMnO4. It is used as an oxidant in organic chemistry. It belongs to a class of compounds known as manganates in which the manganese resides in a +6 oxidation state. Manganate should not be confused with permanganate which contains manganese(VII). Barium manganate is a powerful oxidant, popular in organic synthesis and can be used in a wide variety of oxidation reactions.

<span class="mw-page-title-main">Dimethylthiocarbamoyl chloride</span> Chemical compound

Dimethylthiocarbamoyl chloride is an organosulfur compound with the formula (CH3)2NC(S)Cl. A yellow solid, it is often encountered as a yellow syrup. It is a key reagent in the synthesis of arylthiols via the Newman-Kwart rearrangement.

<span class="mw-page-title-main">Methyl dimethyldithiocarbamate</span> Chemical compound

Methyl dimethyldithiocarbamate is the organosulfur compound with the formula (CH3)2NC(S)SCH3. It is the one of simplest dithiocarbamic esters. It is a white volatile solid that is poorly soluble in water but soluble in many organic solvents. It was once used as a pesticide.

<span class="mw-page-title-main">Transition metal dithiocarbamate complexes</span>

Transition metal dithiocarbamate complexes are coordination complexes containing one or more dithiocarbamate ligand, which are typically abbreviated R2dtc. Many complexes are known. Several homoleptic derivatives have the formula M(R2dtc)n where n = 2 and 3.

References

  1. Schubart, Rüdiger (2000). "Dithiocarbamic Acid and Derivatives". Ullmann's Encyclopedia of Industrial Chemistry . Weinheim: Wiley-VCH. doi:10.1002/14356007.a09_001.
  2. John R. Grunwell (1970). "Reaction of Grignard Reagents with Tetramethylthiuram Disulfide [yielding dithiocarbamates]". J. Org. Chem. 35 (5): 1500–1501. doi:10.1021/jo00830a052.
  3. Wang, Yu; Liao, J.-H. (1989). "Deformation Density Studies of Tetramethylthiuram Disulfide and Tetraethylthiuram Disulfide". Acta Crystallographica B. 45: 65. doi:10.1107/S0108768188010365.
  4. Goshorn, R. H.; Levis, Jr., W. W.; Jaul, E.; Ritter, E. J. (1955). "Diethylthiocarbamyl Chloride". Organic Syntheses . 35: 55. doi:10.15227/orgsyn.035.0055.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  5. Zug, K. A.; Warshaw, E. M.; Fowler, J. F. Jr; Maibach, H. I.; Belsito, D. L.; Pratt, M. D.; Sasseville, D.; Storrs, F. J.; Taylor, J. S.; Mathias, C. G.; Deleo, V. A.; Rietschel, R. L.; Marks, J. (2009). "Patch-test results of the North American Contact Dermatitis Group 2005–2006". Dermatitis. 20 (3): 149–160. doi:10.2310/6620.2009.08097. PMID   19470301. S2CID   24088485.