Sodium diethyldithiocarbamate

Last updated

Contents

Sodium diethyldithiocarbamate
Et2dtcNa.svg
Names
Preferred IUPAC name
Sodium diethylcarbamodithioate
Identifiers
3D model (JSmol)
ChEMBL
ChemSpider
ECHA InfoCard 100.005.192 OOjs UI icon edit-ltr-progressive.svg
PubChem CID
UNII
  • InChI=1S/C5H11NS2.Na/c1-3-6(4-2)5(7)8;/h3-4H2,1-2H3,(H,7,8);/q;+1/p-1 Yes check.svgY
    Key: IOEJYZSZYUROLN-UHFFFAOYSA-M Yes check.svgY
  • InChI=1/C5H11NS2.Na/c1-3-6(4-2)5(7)8;/h3-4H2,1-2H3,(H,7,8);/q;+1/p-1
    Key: IOEJYZSZYUROLN-REWHXWOFAF
  • [Na+].[S-]C(=S)N(CC)CC
Properties
C5H10NS2Na
Molar mass 171.259 g/mol (anhydrous)
AppearanceWhite, slightly brown, or slightly pink crystalline solid
Density 1.1 g/cm3
Melting point 95 °C (203 °F; 368 K)
Soluble
Solubility soluble in alcohol, acetone
insoluble in ether, benzene
Hazards
Occupational safety and health (OHS/OSH):
Main hazards
Harmful
Related compounds
Other cations
Silver diethyldithiocarbamate
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Sodium diethyldithiocarbamate is the organosulfur compound with the formula NaS2CN(C2H5)2. It is a pale yellow, water soluble salt.

Preparation

Sodium diethyldithiocarbamate typically crystallizes from water as the trihydrate NaS2CN(C2H5)2.3H2O. The anhydrous salt and the trihydrate are often used interchangeably. [1]

Sodium diethyldithiocarbamate is obtained by treating carbon disulfide with diethylamine in the presence of sodium hydroxide:

CS2 + HN(C2H5)2 + NaOH → NaS2CN(C2H5)2 + H2O

Other dithiocarbamates can be prepared similarly from secondary amines and carbon disulfide. They are used as chelating agents for transition metal ions and as precursors to herbicides and vulcanization reagents.

Reactions

Iron tris(diethyldithiocarbamate), a black solid that is soluble in organic solvents, is a representative complex of diethyldithiocarbamate. Fe(Et2NCS2)3.svg
Iron tris(diethyldithiocarbamate), a black solid that is soluble in organic solvents, is a representative complex of diethyldithiocarbamate.

Oxidation of sodium diethyldithiocarbamate gives the disulfide, also called a thiuram disulfide (Et = ethyl):

2 NaS2CNEt2 + I2 → (S2CNEt2)2 + 2 NaI

Dithiocarbamates are nucleophiles and thus can be alkylated. Even dichloromethane suffices: [2]

2 NaS2CNEt2 + CH2Cl2 → CH2(S2CNEt2)2 + 2 NaCl

Diethyldithiocarbamate reacts with many metal salts to give transition metal dithiocarbamate complexes. The ligands coordinate via the two sulfur atoms. Other more complicated bonding modes are known including binding as unidentate ligand and a bridging ligand using one or both sulfur atoms. [3]

Laboratory and practical use

By the technique of spin trapping, complexes of dithiocarbamates with iron provide one of the very few methods to study the formation of nitric oxide (NO) radicals in biological materials. Although the lifetime of NO in tissues is too short to allow detection of this radical itself, NO readily binds to iron-dithiocarbamate complexes. The resulting mono-nitrosyl-iron complex (MNIC) is stable, and may be detected with Electron Paramagnetic Resonance (EPR) spectroscopy. [4] [5] [6]

The zinc chelation of diethyldithiocarbamate inhibits metalloproteinases, which in turn prevents the degradation of extracellular matrix, an initial step in cancer metastasis and angiogenesis. [7]

Diethyldithiocarbamate inhibits superoxide dismutase, which can both have antioxidant and oxidant effects on cells, depending on the time of administration. [7]

Related Research Articles

<span class="mw-page-title-main">Thiol</span> Any organic compound having a sulfanyl group (–SH)

In organic chemistry, a thiol, or thiol derivative, is any organosulfur compound of the form R−SH, where R represents an alkyl or other organic substituent. The −SH functional group itself is referred to as either a thiol group or a sulfhydryl group, or a sulfanyl group. Thiols are the sulfur analogue of alcohols, and the word is a blend of "thio-" with "alcohol".

<span class="mw-page-title-main">Nitric oxide</span> Colorless gas with the formula NO

Nitric oxide is a colorless gas with the formula NO. It is one of the principal oxides of nitrogen. Nitric oxide is a free radical: it has an unpaired electron, which is sometimes denoted by a dot in its chemical formula. Nitric oxide is also a heteronuclear diatomic molecule, a class of molecules whose study spawned early modern theories of chemical bonding.

<span class="mw-page-title-main">Xanthate</span> Salt that is a metal-thioate/O-esters of dithiocarbonate

A xanthate is a salt or ester of a xanthic acid. The formula of the salt of xanthic acid is [R−O−CS2]M+. Xanthate also refers to the anion [R−O−CS2]. The formula of a xanthic acid is R−O−C(=S)−S−H, such as ethyl xanthic acid, while the formula of an ester of a xanthic acid is R−O−C(=S)−S−R', where R and R' are organyl groups. The salts of xanthates are also called O-organyl dithioates. The esters of xanthic acid are also called O,S-diorganyl esters of dithiocarbonic acid. The name xanthate is derived from Ancient Greek ξανθός (xanthos) meaning 'yellowish' or 'golden', and indeed most xanthate salts are yellow. They were discovered and named in 1823 by Danish chemist William Christopher Zeise. These organosulfur compounds are important in two areas: the production of cellophane and related polymers from cellulose and for extraction of certain sulphide bearing ores. They are also versatile intermediates in organic synthesis.

<span class="mw-page-title-main">Nitrosation and nitrosylation</span> Process of converting organic compounds into nitroso derivatives

Nitrosation and nitrosylation are two names for the process of converting organic compounds or metal complexes into nitroso derivatives, i.e., compounds containing the R−NO functionality. The synonymy arises because the R-NO functionality can be interpreted two different ways, depending on the physico-chemical environment:

<span class="mw-page-title-main">Metal carbonyl</span> Coordination complexes of transition metals with carbon monoxide ligands

Metal carbonyls are coordination complexes of transition metals with carbon monoxide ligands. Metal carbonyls are useful in organic synthesis and as catalysts or catalyst precursors in homogeneous catalysis, such as hydroformylation and Reppe chemistry. In the Mond process, nickel tetracarbonyl is used to produce pure nickel. In organometallic chemistry, metal carbonyls serve as precursors for the preparation of other organometallic complexes.

<span class="mw-page-title-main">Diallyl disulfide</span> Chemical compound

Diallyl disulfide is an organosulfur compound derived from garlic and a few other plants in the genus Allium. Along with diallyl trisulfide and diallyl tetrasulfide, it is one of the principal components of the distilled oil of garlic. It is a yellowish liquid which is insoluble in water and has a strong garlic odor. It is produced during the decomposition of allicin, which is released upon crushing garlic and other plants of the family Alliaceae. Diallyl disulfide has many of the health benefits of garlic, but it is also an allergen causing garlic allergy. Highly diluted, it is used as a flavoring in food. It decomposes in the human body into other compounds such as allyl methyl sulfide.

<span class="mw-page-title-main">Iron(III) nitrate</span> Chemical compound

Iron(III) nitrate, or ferric nitrate, is the name used for a series of inorganic compounds with the formula Fe(NO3)3.(H2O)n. Most common is the nonahydrate Fe(NO3)3.(H2O)9. The hydrates are all pale colored, water-soluble paramagnetic salts.

<span class="mw-page-title-main">Metal nitrosyl complex</span> Complex of a transition metal bonded to nitric oxide: Me–NO

Metal nitrosyl complexes are complexes that contain nitric oxide, NO, bonded to a transition metal. Many kinds of nitrosyl complexes are known, which vary both in structure and coligand.

<span class="mw-page-title-main">Dithiocarbamate</span> Chemical group (>N–C(=S)–S–)

In organic chemistry, a dithiocarbamate is a functional group with the general formula R2N−C(=S)−S−R and structure >N−C(=S)−S−. It is the analog of a carbamate in which both oxygen atoms are replaced by sulfur atoms.

<span class="mw-page-title-main">Sodium dimethyldithiocarbamate</span> Chemical compound

Sodium dimethyldithiocarbamate is the organosulfur compound with the formula NaS2NN(CH3)2. It is one of the simplest organic dithiocarbamates. It is a white or pale yellow, water soluble solid. The compound is a precursor to fungicides and rubber chemicals.

Zineb is the chemical compound with the formula {Zn[S2CN(H)CH2CH2N(H)CS2]}n. Structurally, it is classified as a coordination polymer and a dithiocarbamate complex. This pale yellow solid is used as fungicide.

Organosodium chemistry is the chemistry of organometallic compounds containing a carbon to sodium chemical bond. The application of organosodium compounds in chemistry is limited in part due to competition from organolithium compounds, which are commercially available and exhibit more convenient reactivity.

<span class="mw-page-title-main">Sodium ferrioxalate</span> Chemical compound

Sodium ferrioxalate are inorganic compounds with the formula Na3Fe(C2O4)3(H2O)n. The pentahydrate has been characterized by X-ray crystallography. In contrast the potassium, ammonium, and rubidium salts crystallize from water as their trihydrates.

Sulfur mononitride is an inorganic compound with the molecular formula SN. It is the sulfur analogue of and isoelectronic to the radical nitric oxide, NO. It was initially detected in 1975, in outer space in giant molecular clouds and later the coma of comets. This spurred further laboratory studies of the compound. Synthetically, it is produced by electric discharge in mixtures of nitrogen and sulfur compounds, or combustion in the gas phase and by photolysis in solution.

<span class="mw-page-title-main">Disulfur dioxide</span> Chemical compound

Disulfur dioxide, dimeric sulfur monoxide or SO dimer is an oxide of sulfur with the formula S2O2. The solid is unstable with a lifetime of a few seconds at room temperature.

<span class="mw-page-title-main">Sodium nitroprusside</span> Medication for lowering blood pressure

Sodium nitroprusside (SNP), sold under the brand name Nitropress among others, is a medication used to lower blood pressure. This may be done if the blood pressure is very high and resulting in symptoms, in certain types of heart failure, and during surgery to decrease bleeding. It is used by continuous injection into a vein. Onset is nearly immediate and effects last for up to ten minutes.

<span class="mw-page-title-main">Iron tris(diethyldithiocarbamate)</span> Chemical compound

Iron tris(diethyldithiocarbamate) is the coordination complex of iron with diethyldithiocarbamate with the formula Fe(S2CNEt2)3 (Et = ethyl). It is a black solid that is soluble in organic solvents.

<span class="mw-page-title-main">Cobalt tris(diethyldithiocarbamate)</span> Chemical compound

Cobalt tris(diethyldithiocarbamate) is the coordination complex of cobalt with diethyldithiocarbamate with the formula Co(S2CNEt2)3 (Et = ethyl). It is a diamagnetic green solid that is soluble in organic solvents.

<span class="mw-page-title-main">Transition metal dithiocarbamate complexes</span>

Transition metal dithiocarbamate complexes are coordination complexes containing one or more dithiocarbamate ligand, which are typically abbreviated R2dtc. Many complexes are known. Several homoleptic derivatives have the formula M(R2dtc)n where n = 2 and 3.

<span class="mw-page-title-main">Iron bis(diethyldithiocarbamate)</span> Chemical compound

Iron bis(diethyldithiocarbamate) is a coordination complex with the formula [Fe(S2CNEt2)2]2 where Et = C2H5. A red solid, it is representative of several ferrous dithiocarbamates with diverse substituents in place of ethyl. In terms of structure, the species is dimeric, consisting of two pentacoordinate iron(II) centers. It is isostructural with [Zn(S2CNEt2)2]2, which in turn is similar to zinc bis(dimethyldithiocarbamate).

References

  1. Mereiter K, Preisinger A, Mikenda W, Steidl H (1985). "Hydrogen bonds in sodium dialkylthiocarbamate hydrates. X-ray diffraction and vibrational spectroscopic study". Inorganica Chimica Acta. 98 (2): 71–78. doi:10.1016/s0020-1693(00)84914-2.
  2. Heckley PR, Holah DG, Hughes AN, Leh F (1970). "Reactions of Sodium N,N-Diethyldithiocarbamate with Some Organic Solvents". Canadian Journal of Chemistry. 48 (24): 3827–3830. doi:10.1139/v70-645.
  3. Cotton, F. Albert, Wilkinson, Geoffrey, Murillo, Carlos A., Bochmann, Manfred (1999), Advanced Inorganic Chemistry (6th ed.), New York: Wiley-Interscience, ISBN   0-471-19957-5
  4. Henry Y.; Guissani A.; Ducastel B. (eds); "Nitric oxide research from chemistry to biology: EPR spectroscopy of nitrosylated compounds." Landes, Austin 1997.
  5. Vanin A, Huisman A, van Faassen E (2002). "Iron dithiocarbamate as spin trap for nitric oxide detection: Pitfalls and successes". Nitric Oxide, Part D: Oxide Detection, Mitochondria and Cell Functions, and Peroxynitrite Reactions. Methods in Enzymology. Vol. 359. pp. 27–42. doi:10.1016/s0076-6879(02)59169-2. ISBN   978-0-12-182262-0. PMID   12481557.
  6. van Faassen E.E.; Vanin A.F. (eds); "Radicals for life: The various forms of nitric oxide." Elsevier, Amsterdam 2007.
  7. 1 2 diethyldithiocarbamate National Cancer Institute - Drug Dictionary

Further reading

[[Category:Aldehyde dehydrogenase inhibitors]