Thymoquinone

Last updated
Thymoquinone
Thymoquinone.svg
Names
Preferred IUPAC name
2-Methyl-5-(propan-2-yl)cyclohexa-2,5-diene-1,4-dione
Other names
Thymoquinone
Identifiers
3D model (JSmol)
ChEBI
ChEMBL
ChemSpider
ECHA InfoCard 100.007.020 OOjs UI icon edit-ltr-progressive.svg
PubChem CID
UNII
  • InChI=1S/C10H12O2/c1-6(2)8-5-9(11)7(3)4-10(8)12/h4-6H,1-3H3 Yes check.svgY
    Key: KEQHJBNSCLWCAE-UHFFFAOYSA-N Yes check.svgY
  • CC1=CC(=O)C(=CC1=O)C(C)C
Properties
C10H12O2
Molar mass 164.204 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Thymoquinone is a phytochemical compound found in the plant Nigella sativa . It is also found in select cultivated Monarda fistulosa plants which can be steam distilled to produce an essential oil.

It has been classified as a pan-assay interference compound, which binds indiscriminately to many proteins. [1] It is under preliminary research to identify its possible biological properties. [2] [3] [4]

See also

Related Research Articles

<span class="mw-page-title-main">Salvinorin A</span> Chemical compound

Salvinorin A is the main active psychotropic molecule in Salvia divinorum. Salvinorin A is considered a dissociative hallucinogen.

<span class="mw-page-title-main">Reagent</span> Substance added to a system to cause a chemical reaction

In chemistry, a reagent or analytical reagent is a substance or compound added to a system to cause a chemical reaction, or test if one occurs. The terms reactant and reagent are often used interchangeably, but reactant specifies a substance consumed in the course of a chemical reaction. Solvents, though involved in the reaction mechanism, are usually not called reactants. Similarly, catalysts are not consumed by the reaction, so they are not reactants. In biochemistry, especially in connection with enzyme-catalyzed reactions, the reactants are commonly called substrates.

<span class="mw-page-title-main">Cannabinoid</span> Compounds found in cannabis

Cannabinoids are several structural classes of compounds found in the cannabis plant primarily and most animal organisms or as synthetic compounds. The most notable cannabinoid is the phytocannabinoid tetrahydrocannabinol (THC) (delta-9-THC), the primary psychoactive compound in cannabis. Cannabidiol (CBD) is also a major constituent of temperate cannabis plants and a minor constituent in tropical varieties. At least 113 distinct phytocannabinoids have been isolated from cannabis, although only four have been demonstrated to have a biogenetic origin. It was reported in 2020 that phytocannabinoids can be found in other plants such as rhododendron, licorice and liverwort, and earlier in Echinacea.

<span class="mw-page-title-main">Curcumin</span> Principal curcuminoid of turmeric

Curcumin is a bright yellow chemical produced by plants of the Curcuma longa species. It is the principal curcuminoid of turmeric, a member of the ginger family, Zingiberaceae. It is sold as a herbal supplement, cosmetics ingredient, food flavoring, and food coloring.

<span class="mw-page-title-main">Resveratrol</span> Polyphenol with a stilbene skeleton

Resveratrol (3,5,4′-trihydroxy-trans-stilbene) is a stilbenoid, a type of natural phenol, and a phytoalexin produced by several plants in response to injury or when the plant is under attack by pathogens, such as bacteria or fungi. Sources of resveratrol in food include the skin of grapes, blueberries, raspberries, mulberries, and peanuts.

<span class="mw-page-title-main">Polyphenol</span> Class of chemical compounds

Polyphenols are a large family of naturally occurring phenols. They are abundant in plants and structurally diverse. Polyphenols include flavonoids, tannic acid, and ellagitannin, some of which have been used historically as dyes and for tanning garments.

<span class="mw-page-title-main">Drug discovery</span> Pharmaceutical procedure

In the fields of medicine, biotechnology and pharmacology, drug discovery is the process by which new candidate medications are discovered.

<span class="mw-page-title-main">Medicinal plants</span> Plants or derivatives used to treat medical conditions in humans or animals

Medicinal plants, also called medicinal herbs, have been discovered and used in traditional medicine practices since prehistoric times. Plants synthesize hundreds of chemical compounds for various functions, including defense and protection against insects, fungi, diseases, and herbivorous mammals.

<i>Nigella</i> Genus of annual plants

Nigella is a genus of 18 species of annual plants in the family Ranunculaceae, native to Southern Europe, North Africa, South Asia, Southwest Asia and Middle East. Common names applied to members of this genus are nigella, devil-in-a-bush or love-in-a-mist.

<span class="mw-page-title-main">High-throughput screening</span> Drug discovery technique

High-throughput screening (HTS) is a method for scientific discovery especially used in drug discovery and relevant to the fields of biology, materials science and chemistry. Using robotics, data processing/control software, liquid handling devices, and sensitive detectors, high-throughput screening allows a researcher to quickly conduct millions of chemical, genetic, or pharmacological tests. Through this process one can quickly recognize active compounds, antibodies, or genes that modulate a particular biomolecular pathway. The results of these experiments provide starting points for drug design and for understanding the noninteraction or role of a particular location.

<span class="mw-page-title-main">Phytochemistry</span> Study of phytochemicals, which are chemicals derived from plants

Phytochemistry is the study of phytochemicals, which are chemicals derived from plants. Phytochemists strive to describe the structures of the large number of secondary metabolites found in plants, the functions of these compounds in human and plant biology, and the biosynthesis of these compounds. Plants synthesize phytochemicals for many reasons, including to protect themselves against insect attacks and plant diseases. The compounds found in plants are of many kinds, but most can be grouped into four major biosynthetic classes: alkaloids, phenylpropanoids, polyketides, and terpenoids.

Polyphenol oxidase, an enzyme involved in fruit browning, is a tetramer that contains four atoms of copper per molecule.

<span class="mw-page-title-main">Herkinorin</span> Opioid analgesic compound

Herkinorin is an opioid analgesic that is an analogue of the natural product salvinorin A. It was discovered in 2005 during structure-activity relationship studies into neoclerodane diterpenes, the family of chemical compounds of which salvinorin A is a member.

<span class="mw-page-title-main">Curcuminoid</span> Class of chemical compounds

A curcuminoid is a linear diarylheptanoid, a relatively small class of plant secondary metabolites that includes curcumin, demethoxycurcumin, and bisdemethoxycurcumin, all isolated from turmeric. These compounds are natural phenols and produce a pronounced yellow color that is often used to color foods and medicines. Curcumin is obtained from the root of turmeric.

<span class="mw-page-title-main">Isoquercetin</span> Chemical compound

Isoquercetin, isoquercitrin or isotrifoliin is a flavonoid, a type of chemical compound. It is the 3-O-glucoside of quercetin. Isoquercitrin can be isolated from various plant species including Mangifera indica (mango) and Rheum nobile. It is also present in the leaves of Annona squamosa, Camellia sinensis (tea). and Vestia foetida

<span class="mw-page-title-main">Rhodanine</span> Chemical compound

Rhodanine is a 5-membered heterocyclic organic compound possessing a thiazolidine core. It was discovered in 1877 by Marceli Nencki who named it "Rhodaninsaure" in reference to its synthesis from ammonium rhodanide and chloroacetic acid in water.

<span class="mw-page-title-main">Convallatoxin</span> Chemical compound

Convallatoxin is a glycoside extracted from Convallaria majalis.

<span class="mw-page-title-main">Naturally occurring phenols</span> Group of chemical compounds

In biochemistry, naturally occurring phenols are natural products containing at least one phenol functional group. Phenolic compounds are produced by plants and microorganisms. Organisms sometimes synthesize phenolic compounds in response to ecological pressures such as pathogen and insect attack, UV radiation and wounding. As they are present in food consumed in human diets and in plants used in traditional medicine of several cultures, their role in human health and disease is a subject of research. Some phenols are germicidal and are used in formulating disinfectants.

Pan-assay interference compounds (PAINS) are chemical compounds that often give false positive results in high-throughput screens. PAINS tend to react nonspecifically with numerous biological targets rather than specifically affecting one desired target. A number of disruptive functional groups are shared by many PAINS.

α-Hederin Chemical compound

α-Hederin (alpha-hederin) is a water-soluble pentacyclic triterpenoid saponin found in the seeds of Nigella sativa and leaves of Hedera helix.

References

  1. Baell JB (March 2016). "Feeling Nature's PAINS: Natural Products, Natural Product Drugs, and Pan Assay Interference Compounds (PAINS)". Journal of Natural Products. 79 (3): 616–28. doi:10.1021/acs.jnatprod.5b00947. PMID   26900761.
  2. Farkhondeh T, Samarghandian S, Borji A (September 2017). "An overview on cardioprotective and anti-diabetic effects of thymoquinone". Asian Pacific Journal of Tropical Medicine. 10 (9): 849–854. doi: 10.1016/j.apjtm.2017.08.020 . PMID   29080612.
  3. Ali, Md Yousuf; Akter, Zakia; Mei, Zhiqiang; et al. (February 2021). "Thymoquinone in autoimmune diseases: Therapeutic potential and molecular mechanisms". Biomedicine & Pharmacotherapy. 134: 111157. doi: 10.1016/j.biopha.2020.111157 . ISSN   1950-6007. PMID   33370631. S2CID   229714190.
  4. Abdelrahim, Maen; Esmail, Abdullah; Al Saadi, Noor; Zsigmond, Eva; Al Najjar, Ebtesam; Bugazia, Doaa; Al-Rawi, Hadeel; Alsaadi, Ayat; Kaseb, Ahmed O. (5 April 2022). "Thymoquinone's Antiviral Effects: It is Time to be Proven in the Covid-19 Pandemic Era and its Omicron Variant Surge". Frontiers in Pharmacology. 13. doi: 10.3389/fphar.2022.848676 . PMC   9022724 . PMID   35462919.