In fluid mechanics, topographic steering is the effect of potential vorticity conservation on the motion of a fluid parcel. This means that the fluid parcels will not only react to physical obstacles in their path, but also to changes in topography or latitude. The two types of 'fluids' where topographic steering is mainly observed in daily life are air (air can be considered a compressible fluid in fluid mechanics) and water in respectively the atmosphere and the oceans. Examples of topographic steering can be found in, among other things, paths of low pressure systems and oceanic currents.
In 1869, Kelvin published his circulation theorem, which states that a barotropic, ideal fluid with conservative body forces conserves the circulation around a closed loop. [1] To generalise this, Bjerknes published his own circulation theorem in 1898. [2] Bjerknes extended the concept to inviscid, geostrophic and baroclinic fluids, resulting in addition of terms in the equation.
The exact mathematical description of the different potential vorticities can all be obtained from the circulation theorem of Bjerkness, which is stated as
Here is the circulation, the line integral of the velocity along a closed contour. Also, is the material derivative, is the density, is the pressure, is the angular velocity of the frame of reference and is the area projection of the closed contour onto the equatorial plane. This means the bigger the angle between the contour and the equatorial plane, the smaller this projection becomes.
The formula states that the change of the circulation along a fluid's path is affected by the variation of density in pressure coordinates and by the change in equatorial projection of the contour. Kelvin assumed both a barotropic fluid and a constant projection. Under these assumptions the right hand side of the equation is zero and Kelvin's theorem is found.
When considering a relatively thin layer of fluid of constant density, with on the bottom a topography and on top a free surface, the shallow water approximation can be used. Using this approximation, Rossby showed in 1939, [3] by integrating the shallow water equations over the depth of the fluid, that
Here is the relative vorticity, is the Coriolis parameter and is the height of the water layer. The quantity inside the material derivative was later called the shallow water potential vorticity.
When considering an atmosphere with multiple layers of constant potential temperature, the quasi-2D shallow water equations on a beta plane can be used. In 1940, [4] Rossby used this to show that
Here is the relative vorticity on an isentropic surface, is the Coriolis parameter and is a quantity measuring the weight of unit cross-section of an individual air column in the layer. This last quantity can also be seen as a measure of the vortex depth. The potential vorticity defined here is also called the Rossby potential vorticity.
When the approximation of the discrete layers is relaxed and the fluid becomes continuous, another potential vorticity can be defined which is conserved. It was shown by Ertel in 1942 [5] [6] that
Here is the absolute vorticity, is the gradient in potential temperature and the density. This potential vorticity is also called the Ertel potential vorticity.
To get to this result, first recall the circulation theorem from Kelvin
If the coordinate system is transformed to the one of the local tangent plane coordinates and we use potential temperature as the vertical coordinate, the equation can be slightly rewritten to
Where now is the local circulation in the frame of reference, is Coriolis parameter and is the area on an isentropic surface over which the circulation .
Because the local circulation can be approximated as a product between the area and the relative vorticity on the isentropic surface, the circulation equation yields
When a fluid parcel is between two isentropic layers and the pressure difference between these layers increases, the fluid parcel is 'stretched'. This is because it wants to conserve the potential temperature at each side of the parcel. To conserve the mass, this horizontally thins the fluid parcel while it is vertically stretched. So the area of the isentropic surface, , is a function of how quickly the lines of equal potential temperature change with pressure:
In the end this yields
which is exactly the result found by Ertel, written in a slightly different way. Note that when assuming a layered atmosphere, the gradient in the potential temperature becomes an absolute difference and the result from Kelvin for a layered atmosphere can be found. Also note that when the fluid is incompressible, the layer depth becomes a measure for the change in potential temperature. Then the result for shallow water potential vorticity can be extracted again.
The different definitions of potential vorticity conservation, resulting from different approximations, can be used to explain phenomena observed here on earth. Fluid parcels will move along lines of constant potential vorticity.
Because the scale of large flows in the oceans is much larger than the depth of the ocean, the shallow water approximation and thus (1) can often be used. On top of that, the changes in relative vorticity are very small with respect to the changes in the Coriolis parameter. The direct result of that is that for a fluid parcel a change in ocean floor depth will have to be compensated by a change in latitude. In both hemispheres this means that a rising ocean floor, so a decrease in water depth, results in a deflection equatorwards.
This phenomenon can explain different currents found on earth. One of them is the specific path the water takes in the Antarctic Circumpolar Current. This path is not a straight line, but curves according to the bathymetry.
Another one is the water flowing through the Luzon Strait. Researchers Metzger and Hurlburt showed that the existence of three small shoals can explain the deflection of the current away from the strait instead of flowing through the strait. [7]
In the atmosphere, topographic steering can also be observed. In most cases, the simple modeled layer of the atmosphere and thus (2) can explain the phenomena. When an isentropic layer flows zonally from west to east over a mountain, the topographic steering can create a wave-like pattern on the lee-side and eventually form an alternating pattern of ridges and troughs. [8]
Upon approach of the mountain, the layer depth will increase slightly. This is because the incline of the isentropic surfaces is less steep at the top of the layer than at the bottom. When the layer depth increases, the change in potential vorticity is countered by an increase in relative vorticity as well as the Coriolis parameter. The vortex will begin to move away from the equator and begin to rotate cyclonically.
During the crossing of the mountain, the effect is reversed due to the shrinking of the layer depth. The vortex will rotate anti-cyclonically and move towards the equator. As the vortex leaves the mountain, the resulting latitude is closer to the equator than before. This means vortices will have a cyclonic rotation on the lee-side of the mountain and be turning northwards. The Coriolis parameter and relative vorticity increase and decrease in antiphase. This results in an alternation of cyclonic and anti-cyclonic flows after the mountain. The change in the Coriolis parameter and relative vorticity work against each other, creating a wave-like phenomenon.
When looking at zonal flow from east to west, this effect is not occurring. This is because the change in the Coriolis parameter and the change in relative vorticity work in the same direction. The flow will return to zonal again some time after crossing the mountain.
The effect described is often credited as the source of the tendency of cyclogenesis on lee-sides of mountains. One example of this are the so called Colorado lows, troughs originating from air passing over the Rocky Mountains.
In continuum mechanics, vorticity is a pseudovector field that describes the local spinning motion of a continuum near some point, as would be seen by an observer located at that point and traveling along with the flow. It is an important quantity in the dynamical theory of fluids and provides a convenient framework for understanding a variety of complex flow phenomena, such as the formation and motion of vortex rings.
The barotropic vorticity equation assumes the atmosphere is nearly barotropic, which means that the direction and speed of the geostrophic wind are independent of height. In other words, there is no vertical wind shear of the geostrophic wind. It also implies that thickness contours are parallel to upper level height contours. In this type of atmosphere, high and low pressure areas are centers of warm and cold temperature anomalies. Warm-core highs and cold-core lows have strengthening winds with height, with the reverse true for cold-core highs and warm-core lows.
Rossby waves, also known as planetary waves, are a type of inertial wave naturally occurring in rotating fluids. They were first identified by Sweden-born American meteorologist Carl-Gustaf Arvid Rossby. They are observed in the atmospheres and oceans of planets owing to the rotation of the planet. Atmospheric Rossby waves on Earth are giant meanders in high-altitude winds that have a major influence on weather. These waves are associated with pressure systems and the jet stream. Oceanic Rossby waves move along the thermocline: the boundary between the warm upper layer and the cold deeper part of the ocean.
The potential temperature of a parcel of fluid at pressure is the temperature that the parcel would attain if adiabatically brought to a standard reference pressure , usually 1,000 hPa (1,000 mb). The potential temperature is denoted and, for a gas well-approximated as ideal, is given by
The Sverdrup balance, or Sverdrup relation, is a theoretical relationship between the wind stress exerted on the surface of the open ocean and the vertically integrated meridional (north-south) transport of ocean water.
In classical mechanics, Routh's procedure or Routhian mechanics is a hybrid formulation of Lagrangian mechanics and Hamiltonian mechanics developed by Edward John Routh. Correspondingly, the Routhian is the function which replaces both the Lagrangian and Hamiltonian functions. Routhian mechanics is equivalent to Lagrangian mechanics and Hamiltonian mechanics, and introduces no new physics. It offers an alternative way to solve mechanical problems.
In fluid mechanics, potential vorticity (PV) is a quantity which is proportional to the dot product of vorticity and stratification. This quantity, following a parcel of air or water, can only be changed by diabatic or frictional processes. It is a useful concept for understanding the generation of vorticity in cyclogenesis, especially along the polar front, and in analyzing flow in the ocean.
Frontogenesis is a meteorological process of tightening of horizontal temperature gradients to produce fronts. In the end, two types of fronts form: cold fronts and warm fronts. A cold front is a narrow line where temperature decreases rapidly. A warm front is a narrow line of warmer temperatures and essentially where much of the precipitation occurs. Frontogenesis occurs as a result of a developing baroclinic wave. According to Hoskins & Bretherton, there are eight mechanisms that influence temperature gradients: horizontal deformation, horizontal shearing, vertical deformation, differential vertical motion, latent heat release, surface friction, turbulence and mixing, and radiation. Semigeostrophic frontogenesis theory focuses on the role of horizontal deformation and shear.
The omega equation is a culminating result in synoptic-scale meteorology. It is an elliptic partial differential equation, named because its left-hand side produces an estimate of vertical velocity, customarily expressed by symbol , in a pressure coordinate measuring height the atmosphere. Mathematically, , where represents a material derivative. The underlying concept is more general, however, and can also be applied to the Boussinesq fluid equation system where vertical velocity is in altitude coordinate z.
In fluid dynamics, the mild-slope equation describes the combined effects of diffraction and refraction for water waves propagating over bathymetry and due to lateral boundaries—like breakwaters and coastlines. It is an approximate model, deriving its name from being originally developed for wave propagation over mild slopes of the sea floor. The mild-slope equation is often used in coastal engineering to compute the wave-field changes near harbours and coasts.
Equatorial Rossby waves, often called planetary waves, are very long, low frequency water waves found near the equator and are derived using the equatorial beta plane approximation.
In fluid dynamics, a cnoidal wave is a nonlinear and exact periodic wave solution of the Korteweg–de Vries equation. These solutions are in terms of the Jacobi elliptic function cn, which is why they are coined cnoidal waves. They are used to describe surface gravity waves of fairly long wavelength, as compared to the water depth.
The Fréedericksz transition is a phase transition in liquid crystals produced when a sufficiently strong electric or magnetic field is applied to a liquid crystal in an undistorted state. Below a certain field threshold the director remains undistorted. As the field value is gradually increased from this threshold, the director begins to twist until it is aligned with the field. In this fashion the Fréedericksz transition can occur in three different configurations known as the twist, bend, and splay geometries. The phase transition was first observed by Fréedericksz and Repiewa in 1927. In this first experiment of theirs, one of the walls of the cell was concave so as to produce a variation in thickness along the cell. The phase transition is named in honor of the Russian physicist Vsevolod Frederiks.
While geostrophic motion refers to the wind that would result from an exact balance between the Coriolis force and horizontal pressure-gradient forces, quasi-geostrophic (QG) motion refers to flows where the Coriolis force and pressure gradient forces are almost in balance, but with inertia also having an effect.
Monin–Obukhov (M–O) similarity theory describes the non-dimensionalized mean flow and mean temperature in the surface layer under non-neutral conditions as a function of the dimensionless height parameter, named after Russian scientists A. S. Monin and A. M. Obukhov. Similarity theory is an empirical method that describes universal relationships between non-dimensionalized variables of fluids based on the Buckingham π theorem. Similarity theory is extensively used in boundary layer meteorology since relations in turbulent processes are not always resolvable from first principles.
In fluid dynamics, a trochoidal wave or Gerstner wave is an exact solution of the Euler equations for periodic surface gravity waves. It describes a progressive wave of permanent form on the surface of an incompressible fluid of infinite depth. The free surface of this wave solution is an inverted (upside-down) trochoid – with sharper crests and flat troughs. This wave solution was discovered by Gerstner in 1802, and rediscovered independently by Rankine in 1863.
Conditional symmetric instability, or CSI, is a form of convective instability in a fluid subject to temperature differences in a uniform rotation frame of reference while it is thermally stable in the vertical and dynamically in the horizontal. The instability in this case develop only in an inclined plane with respect to the two axes mentioned and that is why it can give rise to a so-called "slantwise convection" if the air parcel is almost saturated and moved laterally and vertically in a CSI area. This concept is mainly used in meteorology to explain the mesoscale formation of intense precipitation bands in an otherwise stable region, such as in front of a warm front. The same phenomenon is also applicable to oceanography.
The Rayleigh–Kuo criterion is a stability condition for a fluid. This criterion determines whether or not a barotropic instability can occur, leading to the presence of vortices. The Kuo criterion states that for barotropic instability to occur, the gradient of the absolute vorticity must change its sign at some point within the boundaries of the current. Note that this criterion is a necessary condition, so if it does not hold it is not possible for a barotropic instability to form. But it is not a sufficient condition, meaning that if the criterion is met, this does not automatically mean that the fluid is unstable. If the criterion is not met, it is certain that the flow is stable.
A baroclinic instability is a fluid dynamical instability of fundamental importance in the atmosphere and ocean. It can lead to the formation of transient mesoscale eddies, with a horizontal scale of 10-100 km. In contrast, flows on the largest scale in the ocean are described as ocean currents, the largest scale eddies are mostly created by shearing of two ocean currents and static mesoscale eddies are formed by the flow around an obstacle (as seen in the animation on eddy. Mesoscale eddies are circular currents with swirling motion and account for approximately 90% of the ocean's total kinetic energy. Therefore, they are key in mixing and transport of for example heat, salt and nutrients.
Topographic Rossby waves are geophysical waves that form due to bottom irregularities. For ocean dynamics, the bottom irregularities are on the ocean floor such as the mid-ocean ridge. For atmospheric dynamics, the other primary branch of geophysical fluid dynamics, the bottom irregularities are found on land, for example in the form of mountains. Topographic Rossby waves are one of two types of geophysical waves named after the meteorologist Carl-Gustaf Rossby. The other type of Rossby waves are called planetary Rossby waves and have a different physical origin. Planetary Rossby waves form due to the changing Coriolis parameter over the earth. Rossby waves are quasi-geostrophic, dispersive waves. This means that not only the Coriolis force and the pressure-gradient force influence the flow, as in geostrophic flow, but also inertia.
{{cite journal}}
: |last2=
has generic name (help)