Torridonian

Last updated
Layers of Torridonian sandstone exposed near Diabaig Torridonian Sandstone.jpg
Layers of Torridonian sandstone exposed near Diabaig
Slioch formed of Torridon Group sandstones lying on an irregular unconformity over Lewisian gneiss, seen in the middle and foreground around Loch Maree Slioch from Loch Maree.jpg
Slioch formed of Torridon Group sandstones lying on an irregular unconformity over Lewisian gneiss, seen in the middle and foreground around Loch Maree

In geology, the term Torridonian is the informal name for the Torridonian Supergroup, a series of Mesoproterozoic [1] to Neoproterozoic arenaceous and argillaceous sedimentary rocks, which occur extensively in the Northwest Highlands of Scotland. The strata of the Torridonian Supergroup are particularly well exposed in the district of upper Loch Torridon, a circumstance which suggested the name Torridon Sandstone, first applied to these rocks by James Nicol. Stratigraphically, they lie unconformably on gneisses of the Lewisian complex and their outcrop extent is restricted to the Hebridean Terrane. [2]

Geology The study of the composition, structure, physical properties, and history of Earths components, and the processes by which they are shaped.

Geology is an earth science concerned with the solid Earth, the rocks of which it is composed, and the processes by which they change over time. Geology can also refer to the study of the solid features of any terrestrial planet or natural satellite such as Mars or the Moon. Modern geology significantly overlaps all other earth sciences, including hydrology and the atmospheric sciences, and so is treated as one major aspect of integrated earth system science and planetary science.

The Mesoproterozoic Era is a geologic era that occurred from 1,600 to 1,000 million years ago. The Mesoproterozoic was the first period of Earth's history of which a fairly definitive geological record survives. Continents existed during the preceding era, but little is known about them. The continental masses of the Mesoproterozoic were more or less the same ones that exist today.

The Neoproterozoic Era is the unit of geologic time from 1,000 to 541 million years ago.

Contents

Rock type

The rocks are mainly red and brown sandstones, arkoses and shales with coarse conglomerates locally at the base. Some of the materials of these rocks were derived from the underlying Lewisian gneiss, upon the uneven surface of which they rest, but the bulk of the material was obtained from rocks that are nowhere now exposed. Upon this ancient denuded land surface the Torridonian strata rest horizontally or with gentle inclination. Some of the peaks, such as Beinn Eighe, are capped with white Cambrian quartzite, giving them a distinctive appearance when seen from afar. Some of the quartzite contains fossilized worm burrows and is known as pipe rock. It is circa 500 million years old. The Torridon landscape is itself highly denuded by glacial and alluvial action, and represents the remnants of an ancient peneplain.

Sandstone A clastic sedimentary rock composed mostly of sand-sized particles

Sandstone is a clastic sedimentary rock composed mainly of sand-sized mineral particles or rock fragments.

Arkose A type of sandstone containing at least 25% feldspar

Arkose is a detrital sedimentary rock, specifically a type of sandstone containing at least 25% feldspar. Arkosic sand is sand that is similarly rich in feldspar, and thus the potential precursor of arkose.

Shale A fine-grained, clastic sedimentary rock

Shale is a fine-grained, clastic sedimentary rock composed of mud that is a mix of flakes of clay minerals and tiny fragments of other minerals, especially quartz and calcite. Shale is characterized by breaks along thin laminae or parallel layering or bedding less than one centimeter in thickness, called fissility. It is the most common sedimentary rock.

Occurrence

Geological map of the Hebridean Terrane showing distribution of Torridonian sediments Hebridean Terrane.png
Geological map of the Hebridean Terrane showing distribution of Torridonian sediments
Thick-bedded sandstones of the Stoer Group exposed on the Old Man of Stoer The Old Man of Stoer - geograph.org.uk - 37648.jpg
Thick-bedded sandstones of the Stoer Group exposed on the Old Man of Stoer

Their outcrop extends in a belt of variable breadth from Cape Wrath to the Point of the peninsula of Sleat in Skye, running in a N.N.E.-S.S.W. direction through Caithness, Sutherland, Ross and Cromarty, and Skye and Lochalsh. They form the isolated mountain peaks of Canisp, Quinag and Suilven in the area of Loch Assynt, of Slioch near Loch Maree, and other hills. They attain their maximum development in the Applecross, Gairloch and Torridon districts, form the greater part of Scalpay, and occur also in Rùm, Raasay, Soay and the Crowlin Islands. They are also found beneath much of the Sea of the Hebrides overlying the Lewisian gneiss. [3]

Cape Wrath northwestern extreme point of mainland Great Britain

Cape Wrath is a cape in the Durness parish of the county of Sutherland in the Highlands of Scotland. It is the most north-westerly point in mainland Britain.

Sleat peninsula on the Isle of Skye, Scotland

Sleat is a peninsula on the island of Skye in the Highland council area of Scotland, known as "the garden of Skye". It is the home of the clan MacDonald of Sleat. The name comes from the Scottish Gaelic Sléibhte, which in turn comes from Old Norse sléttr, which well describes Sleat when considered in the surrounding context of the mainland, Skye and Rùm mountains that dominate the horizon all about Sleat.

Caithness Historic county in Scotland

Caithness is a historic county, registration county and lieutenancy area of Scotland.

Sub-divisions

The Torridonian is divided into the older Stoer Group and the younger Sleat and Torridon Groups separated by an angular unconformity. Paleomagnetic data suggest that this unconformity represents a major time break. These sediments are interpreted to have been deposited during a period of rifting. [2]

Paleomagnetism Study of Earths magnetic field in past

This term is also sometimes used for natural remanent magnetization.

Rift A linear zone where the Earths crust is being pulled apart, and is an example of extensional tectonics

In geology, a rift is a linear zone where the lithosphere is being pulled apart and is an example of extensional tectonics.

Stoer Group

The Stoer Group outcrops on the peninsula of Stoer, near Assynt, Sutherland. It is subdivided into three formations. [4]

Stoer village in Scotland

Stoer is a crofting township in the parish of Assynt, Sutherland, in the Highlands of Scotland and in the council area of Highland. It is located about five miles north of the village of Lochinver.

Assynt Sparsely populated area of Sutherland on the west coast of Scotland

Assynt is a sparsely populated area in the south-west of Sutherland, lying north of Ullapool on the west coast of Scotland. Assynt is known for its landscape and its remarkable mountains, which have led to the area, along with neighbouring Coigach, being designated as the Assynt-Coigach National Scenic Area, one of 40 such areas in Scotland.

Sutherland Historic county in Scotland

Sutherland is a historic county, registration county and lieutenancy area in the Highlands of Scotland. Its county town is Dornoch. Sutherland borders Caithness to the east, Ross-shire to the south and the Atlantic to the north and west. Like its southern neighbour Ross-shire, Sutherland has some of the most dramatic scenery in the whole of Europe, especially on its western fringe where the mountains meet the sea. These include high sea cliffs, and very old mountains composed of Precambrian and Cambrian rocks.

Clachtoll Formation

A basal breccia is present in many areas with large clasts derived from the underlying Lewisian. There is local evidence of weathering of the gneiss beneath the unconformity. [4] Away from the unconformity the breccia becomes crudely stratified within an overall fining upwards sequence passing up into pebbly sandstones, the deposits of small alluvial fans. This breccia facies passes vertically and laterally in most places into muddy massive sandstones, true greywackes. The lower part of these sandstones are almost unbedded being replaced upwards by half metre thick beds capped by siltstones often with well-preserved desiccation structures. In parts of the outcrop, the muddy sandstones are succeeded by the deposits of a braided river system, trough cross-bedded sandstones and conglomerates.

Breccia Rock composed of broken fragments cemented by a matrix

Breccia is a rock composed of broken fragments of minerals or rock cemented together by a fine-grained matrix that can be similar to or different from the composition of the fragments.

Greywacke A hard, dark sandstone with poorly sorted angular grains in a compact, clay-fine matrix

Greywacke or graywacke is a variety of sandstone generally characterized by its hardness, dark color, and poorly sorted angular grains of quartz, feldspar, and small rock fragments or lithic fragments set in a compact, clay-fine matrix. It is a texturally immature sedimentary rock generally found in Paleozoic strata. The larger grains can be sand- to gravel-sized, and matrix materials generally constitute more than 15% of the rock by volume. The term "greywacke" can be confusing, since it can refer to either the immature aspect of the rock or its fine-grained (clay) component.

Braided river A network of river channels separated by small, and often temporary, islands called [[braid bar]]s

A braided river, or braided channel, consists of a network of river channels separated by small, and often temporary, islands called braid bars or, in British usage, aits or eyots. Braided streams occur in rivers with low slope and/or large sediment load. Braided channels are also typical of environments that dramatically decrease channel depth, and consequently channel velocity, such as river deltas, alluvial fans, and peneplains.

Bay of Stoer Formation

The Bay of Stoer Formation consists of a lower section formed of red trough cross-bedded sandstones with some pebbles, interpreted to be the deposits of a braided river system. The uppermost 100 m of the formation, the Stac Fada and Poll a' Mhuilt members, form a distinctive marker layer within the Stoer Group succession with a strike extent of 50 km. The Stac Fada Member is generally about 10 m thick and consists of muddy sandstone facies with abundant clasts of vesicular volcanic glass, locally with accretionary lapilli. The matrix for these volcanic clasts is always non-volcanic suggesting transport from the area where they were erupted. The member also includes large rafts of gneiss and sandstone, up to 15 m in length. The Stac Fada member has been traditionally interpreted to be a mudflow. [2] An alternative suggestion has been that the member represents part of the proximal ejecta blanket from an impact crater. This interpretation is supported by the presence of shocked quartz and biotite. [5] The overlying Poll a' Mhuilt member consists of a thin sequence of siltstones and fine sandstones alternating with muddy sandstones, suggesting deposition in a lacustrine environment. [2]

Meall Dearg Formation

The uppermost part of the sequence consists of trough cross-bedded sandstones thought to have been deposited by braided rivers, similar to the lower part of the Bay of Stoer Formation, possibly with wider channels and a lower paleoslope. [2]

Sleat Group

The Sleat Group, which outcrops on the Sleat peninsula on Skye, underlies the Torridon Group conformably, but the relationship with the Stoer Group is nowhere exposed. It is presumed to have been deposited later than the Stoer Group, but possibly in a separate sub-basin. It is metamorphosed to greenschist facies and sits within the Kishorn Nappe, part of the Caledonian thrust belt, making its exact relationship to the other outcrops difficult to assess. [2] The sequence consists of mainly coarse feldspathic sandstones deposited in a fluvial environment with some less common grey shales, probably deposited in a lacustrine environment.

Rubha Guail Formation

The unconformity at the base of the Sleat Group is not exposed on Skye, but at Kyle of Lochalsh, the basal part of the sequence is seen to consist of breccias, with clasts derived from the underlying gneiss. Topographic relief on the unconformity reaches several hundred metres. [4] Most of the remaining part of the formation consists of coarse green trough cross-bedded sandstones, the colour coming from its content of epidote and chlorite. The coarse sandstone beds are interbedded with fine-grained sandstones and siltstones, which become more common towards the top of the formation. The siltstones show desiccation features. The formation shows an overall upward-fining trend, which continued with the overlying Loch na Dal Formation siltstones. [2]

Loch na Dal Formation

The basal part of this formation is formed of laminated dark-grey siltstones. This 200 m thick unit is often phosphatic and contains occasional coarse to very coarse sandstone laminae. It is interpreted to represent the maximum expansion of a lake. The upper part of the formation is composed mainly of coarse, occasionally pebbly, trough cross-bedded sandstones, interpreted to record the building out of a series of deltas into the earlier lake. [2]

Beinn na Seamraig Formation

This formation consist of coarse-grained cross-bedded sandstones, typically showing contorted bedding. [2]

Kinloch Formation

This formation is similar to the underlying Beinn na Seamraig Formation. The main difference is that the sandstones are generally finer-grained than those below and have better developed ripple-drift lamination. [4] The sediments show marked cyclicity, with fining upward cycles, 2535 m thick, with shales developed at the top. [2] The uppermost boundary of this group with the overlying Torridon Group has been interpreted to be conformable, with evidence of interfingering between the Kinloch Formation shales and Applecross Formation sandstones. In support of this observation, there are no sandstone clasts above the boundary and no change in magnetisation between the formations. The main difference is in the degree of albitisation of the feldspars; those in the Sleat Group are only partially affected, while those in the Applecross Formation are completely albitised. [4] There is also some evidence for a change in bedding orientation across the boundary, which is nowhere well-exposed, suggesting that it may represent some sort of disconformity. [6]

Torridon Group

Horizontally bedded sandstones of the Torridon Group, forming the Horns of Beinn Alligin Horns of Alligin.jpg
Horizontally bedded sandstones of the Torridon Group, forming the Horns of Beinn Alligin

The Torridon Group infills an irregular land surface with up to 600 m of topography locally, cutting down through the previously deposited Stoer group sediments, resting in many areas directly on the Lewisian. It has been suggested that there is significant unconformity within this group, between the Diabaig and Applecross Formations. [6]

Diabaig Formation

The lowest part of this formation consists of a basal breccia containing clasts derived from the underlying Lewisian complex with the thickest developments in the paleovalleys. The breccias passing vertically and laterally into tabular sandstones. These are locally channelised and interfinger with grey shales containing thin beds of fine-grained sandstone with wave rippled surfaces. The shales show the effects of desiccation with mudcracks preserved by being filled by overlying sandstone layers. In the upper part of the formation, beds of massive sandstone with sharp bases appear, becoming more common and thicker bedded towards the top. Ripple-drift lamination at the top of the sandstone layers indicates deposition from easterly-flowing currents. This sequence is interpreted to be to represent the progressive infill of the topography by alluvial fans building out into ephemeral lakes. The more massive beds are interpreted to be lake turbidites. [2]

Applecross Formation

This formation consists of coarse sandstones, both trough and planar cross-bedded. The orientation of the troughs suggest a paleocurrent flowing from the Northwest. The sandstones carry a distinctive set of pebbles, including jasper and porphyry. Most of the sandstone beds are affected by soft-sediment deformation structures suggesting liquefaction, possibly as a result of seismic activity. The uppermost part of the formation consists of finer-grained sandstones, transitional to those of the overlying Aultbea Formation. At Cape Wrath the basal part of the formation shows a fanning of paleocurrent directions consistent with deposition from a large alluvial fan (~40 km radius) with its apex near the Minch Fault. The source area for this fan has been calculated as about 10,000 km2. [2]

Aultbea Formation

Sgurr Fiona and the Corrag Bhuidhe pinnacles on An Teallach Sgurr fiona.jpg
Sgurr Fiona and the Corrag Bhuidhe pinnacles on An Teallach

This formation is similar to the Applecross formation except that the sandstones are fine to medium-grained and there are very few pebbles. Almost all of these sandstone beds show the contortions shown by the older formation. The Applecross and Aultbea Formations together consist of an overall fining-upward sequence of sandstones. Only the outcrops at Cape Wrath described above have a consistent radial pattern suggesting that the sequence was deposited in a bajada environment, by a series of smaller fans merging to form a braided river system. [2]

Cailleach Head Formation

This formation is similar to the underlying Aultbea Formation, the main difference being in grain size, with this formation being noticeably finer-grained. The sequence is made up of 22 m thick cycles, each with a basal erosion surface followed by dark grey shales with desiccation cracks, planar cross-bedded sandstones with wave rippled tops, overlain by trough cross-bedded micaceous sandstones. These cycles are thought to represent repeated progradation of deltas into a lake. A lack of evaporite minerals suggest that the lakes had through drainage. Acritarch microfossils were described from here by Teall in 1907, [7] the first Precambrian fossils described in Britain. [2]

Age

The upper age limit for the deposition of this sequence is constrained by the age of the last tectonic and metamorphic event to affect the Lewisian complex on which it was deposited, for which ages cluster between about 12001100 Ma. The lower limit is provided by the age of the lower Cambrian quartzite that lies above it, about 544 Ma. Radiometric ages from the Torridonian sequence itself give ages of about 1200 Ma for the Stoer Group and 1000950 for the basal part of the Torridon Group. This implies an age gap of at least 200 Ma between the deposition of these two groups, consistent with the paleomagnetic evidence. [2] Ages of detrital zircons also provide some constraints on the sequence age. The Stoer group and the lower part of the Sleat Group show ages consistent with derivation from Scourian and to a lesser extent Laxfordian rocks, with no dates after 1700 Ma. The upper part of the Sleat Group includes a large component of broadly Laxfordian age with almost no Archaean ages, with a lower limit of about 1200 Ma. In contrast the Diabaig Formation shows a small group clustered around 1100 Ma, the age of the Grenville Orogeny. In the Applecross and Aultbea Formations there are many more zircons giving ages around 1100 Ma and even below 1000 Ma. This evidence suggest that the Stour and Sleat Groups were deposited before the Grenvillian event, pre-1200 Ma, while the Diabaig Formation was deposited after the orogeny, after about 1090 Ma, and the remaining parts of the Torridon Group after about 1060 Ma. [6] A more precise age has been obtained for authigenic feldspars in the Stac Fada Member of the Stoer Group at 1177±5 Ma interpreted to have formed immediately after emplacement of the ejecta blanket. [1]

Tectonic setting

Variations in thickness and lithology are consistent with both the Stoer and Sleat/Torridon Groups being deposited in a rift setting. Evidence from seismic reflection data in the Minch suggests that the Minch Fault was active throughout the deposition of the Torridon Group. This is consistent with the generally westerly derived pebbly material throughout the thickness of the Applecross Formation, suggesting a constantly rejuvenated sediment source in that direction. [2] More recent work has suggested that although the Stoer and Sleat Groups were probably deposited in a rift setting, the scale and continuity of the Torridon Group, particularly the Applecross and Aultbea Formations, is more consistent with a molasse type setting possibly related to the Grenvillian Orogeny. [6]

Related Research Articles

Los Angeles Basin geographic region in Southern California, USA

The Los Angeles Basin is a sedimentary basin located in southern California, in a region known as the Peninsular Ranges. The basin is also connected to an anomalous group of east-west trending chains of mountains collectively known as the California Transverse Ranges. The present basin is a coastal lowland area, whose floor is marked by elongate low ridges and groups of hills that is located on the edge of the Pacific plate. The Los Angeles Basin, along with the Santa Barbara Channel, the Ventura Basin, the San Fernando Valley, and the San Gabriel Basin, lies within the greater southern California region. On the north, northeast, and east, the lowland basin is bound by the Santa Monica Mountains and Puente, Elysian, Repetto hills. To the southeast, the basin is bordered by the Santa Ana mountains and the San Joaquin Hills. The western boundary of the basin is marked by the Continental Borderland and is part of the onshore portion. The California borderland is characterized by north-west trending offshore ridges and basins. The Los Angeles Basin is notable for its great structural relief and complexity in relation to its geologic youth and small size for its prolific oil production. Yerkes et al. identify 5 major stages of the basin's evolution that begins in the Upper Cretaceous and ends in the Pleistocene. This basin can be classified as an irregular pull-apart basin accompanied by rotational tectonics during the post-early Miocene.

Conglomerate (geology) A coarse-grained clastic sedimentary rock with mainly rounded to subangular clasts

Conglomerate is a coarse-grained clastic sedimentary rock that is composed of a substantial fraction of rounded to subangular gravel-size clasts, e.g., granules, pebbles, cobbles, and boulders, larger than 2 mm (0.079 in) in diameter. Conglomerates form by the consolidation and lithification of gravel. Conglomerates typically contain finer grained sediment, e.g., either sand, silt, clay or combination of them, called matrix by geologists, filling their interstices and are often cemented by calcium carbonate, iron oxide, silica, or hardened clay.

Moine Thrust Belt

The Moine Thrust Belt or Moine Thrust Zone is a linear tectonic feature in the Scottish Highlands which runs from Loch Eriboll on the north coast 190 kilometres (120 mi) south-west to the Sleat peninsula on the Isle of Skye. The thrust belt consists of a series of thrust faults that branch off the Moine Thrust itself. Topographically, the belt marks a change from rugged, terraced mountains with steep sides sculptured from weathered igneous, sedimentary and metamorphic rocks in the west to an extensive landscape of rolling hills over a metamorphic rock base to the east. Mountains within the belt display complexly folded and faulted layers and the width of the main part of the zone varies up to 10 kilometres (6.2 mi), although it is significantly wider on Skye.

Clastic rock type of sedimentary rock

Clastic rocks are composed of fragments, or clasts, of pre-existing minerals and rock. A clast is a fragment of geological detritus, chunks and smaller grains of rock broken off other rocks by physical weathering. Geologists use the term clastic with reference to sedimentary rocks as well as to particles in sediment transport whether in suspension or as bed load, and in sediment deposits.

The Northwest Highlands are located in the northern third of Scotland that is separated from the Grampian Mountains by the Great Glen. The region comprises Wester Ross, Assynt, Sutherland and part of Caithness. The Caledonian Canal, which extends from Loch Linnhe in the south-west, via Loch Ness to the Moray Firth in the north-east splits this area from the rest of the country. The city of Inverness and the town of Fort William serve as gateways to the region from the south.

Simi Valley

Simi Valley is a synclinal valley in Southern California in the United States. It is an enclosed or hidden valley surrounded by mountains and hills. It is connected to the San Fernando Valley to the east by the Santa Susana Pass and the 118 freeway, and in the west the narrows of the Arroyo Simi and the Reagan Freeway connect to Moorpark and Ventura, California. The relatively flat bottom of the valley contains soils formed from shales, sandstones, and conglomerates eroded from the surrounding hills of the Santa Susana Mountains to the north, which separate Simi Valley from the Santa Clara River Valley, and the Simi Hills.

Enon Formation

The Enon Formation is a geological formation found in the Eastern and Western Cape provinces in South Africa. It is the lowermost of the four formations found within the Uitenhage Group of the Algoa Basin, its type locality, where it has been measured at a maximum thickness of 480 metres (1,570 ft). Discontinuous outcrops are also found in the Worcester-Pletmos and Oudshoorn-Gamtoos Basins, including isolated occurrences in the Haasvlakte, Jubilee, and Soutpansvlakte Basins near the small town Bredasdorp.

Lewisian complex suite of Precambrian metamorphic rocks that outcrop in the northwestern part of Scotland

The Lewisian complex or Lewisian gneiss is a suite of Precambrian metamorphic rocks that outcrop in the northwestern part of Scotland, forming part of the Hebridean Terrane and the North Atlantic Craton. These rocks are of Archaean and Paleoproterozoic age, ranging from 3.0–1.7 Ga. They form the basement on which the Torridonian and Moine Supergroup sediments were deposited. The Lewisian consists mainly of granitic gneisses with a minor amount of supracrustal rocks. Rocks of the Lewisian complex were caught up in the Caledonian orogeny, appearing in the hanging walls of many of the thrust faults formed during the late stages of this tectonic event.

Hebridean Terrane Part of the Caledonian orogenic belt in northwest Scotland

The Hebridean Terrane is one of the terranes that form part of the Caledonian orogenic belt in northwest Scotland. Its boundary with the neighbouring Northern Highland Terrane is formed by the Moine Thrust Belt. The basement is formed by Archaean and Paleoproterozoic gneisses of the Lewisian complex, unconformably overlain by the Neoproterozoic Torridonian sediments, which in turn are unconformably overlain by a sequence of Cambro–Ordovician sediments. It formed part of the Laurentian foreland during the Caledonian continental collision.

Unkar Group

The Unkar Group is a sequence of strata of Proterozoic age that are subdivided into five geologic formations and exposed within the Grand Canyon, Arizona, Southwestern United States. It is about 1,600 to 2,200 m thick and composed, in ascending order, of the Bass Formation, Hakatai Shale, Shinumo Quartzite, Dox Formation, and Cardenas Basalt. It accumulated approximately between 1250 and 1104 Ma. In ascending order, the Unkar Group is overlain by the Nankoweap Formation, about 113 to 150 m thick; the Chuar Group, about 1,900 m (6,200 ft) thick; and the Sixtymile Formation, about 60 m (200 ft) thick. The Nankoweap and Sixtymile formations together with the Chuar and Unkar groups comprise the Grand Canyon Supergroup.

Porcupine Gorge

Porcupine Gorge is a gorge on Galah Creek in Porcupine, Shire of Flinders in North West Queensland, Australia. It is a protected area within the Porcupine Gorge National Park. Access to the gorge and national park is via the Kennedy Development Road.

Colonsay Group

The Colonsay Group is an estimated 5,000 m thick sequence of mildly metamorphosed Neoproterozoic sedimentary rocks that outcrop on the islands of Colonsay, Islay and Oronsay and the surrounding seabed. They have been correlated with the Grampian Group, the oldest part of the Dalradian Supergroup.

Hakatai Shale

The Hakatai Shale is a Mesoproterozoic rock formation that outcrops in the Grand Canyon, Coconino County, Arizona. It consists of colorful strata that exhibit colors that vary from purple to red to brilliant orange on outcrop. The colors are the result of the oxidation of iron-bearing minerals in the Hakatai Shale. It consists of lower and middle members that consist of bright-red, slope-forming, highly fractured, argillaceous mudstones and shale and an upper member composed of purple and red, cliff-forming, medium-grained sandstone. Its thickness, which apparently increases eastwards, varies form 137 to 300 m. In general, the Hakatai Shale and associated strata of the Unkar Group rocks dip northeast (10°-30°) toward normal faults that dip 60° or more toward the southwest. This can be seen at the Palisades fault in the eastern part of the main Unkar Group outcrop area. In addition, thick, prominent, and dark-colored basaltic sills and dikes cut across the purple to red to brilliant orange strata of the Hakatai Shale.

The Stretton Group is a group of rocks associated with the Longmyndian Supergroup of Ediacaran age, in Shropshire, England. The rocks are located within the tract between two elements of the Welsh Borderland Fault System, the Church Stretton Fault and the Pontesford-Linley Lineament.

Bass Formation lithostratigraphic unit

The Bass Formation, also known as the Bass Limestone, is a Mesoproterozoic rock formation that outcrops in the eastern Grand Canyon, Coconino County, Arizona. The Bass Formation erodes as either cliffs or stair-stepped cliffs. In the case of the stair-stepped topography, resistant dolomite layers form risers and argillite layers form steep treads. In general, the Bass Formation and associated strata of the Unkar Group rocks dip northeast (10°-30°) toward normal faults that dip 60+° toward the southwest. This can be seen at the Palisades fault in the eastern part of the main Unkar Group outcrop area. In addition, thick, prominent, and dark-colored basaltic sills intrude across the Bass Formation.

Shinumo Quartzite

The Shinumo Quartzite also known as the Shinumo Sandstone, is a Mesoproterozoic rock formation, which outcrops in the eastern Grand Canyon, Coconino County, Arizona. The Shinumo Quartzite consists of a series of massive, cliff-forming sandstones and sedimentary quartzites. Its cliffs contrast sharply with the stair-stepped topography of the underlying Hakatai Shale. Overlying it, dark green to black, fissile, slope-forming shales of the Dox Formation create a well-defined notch. It and other formations of the Unkar Group occur as isolated fault-bound remnants along the main stem of the Colorado River and its tributaries in Grand Canyon. Typically, the Shinumo Quartzite and associated strata of the Unkar Group dip northeast (10°-30°) toward normal faults that dip 60+° toward the southwest. This can be seen at the Palisades fault in the eastern part of the main Unkar Group outcrop area.

Geology of Skye

The geology of Skye in Scotland is highly variable and the island's landscape reflects changes in the underlying nature of the rocks. A wide range of rock types are exposed on the island, sedimentary, metamorphic and igneous, ranging in age from the Archaean through to the Quaternary.

Dox Formation

The Dox Formation, also known as the Dox Sandstone, is a Mesoproterozoic rock formation that outcrops in the eastern Grand Canyon, Coconino County, Arizona. The strata of the Dox Formation, except for some more resistant sandstone beds, are relatively susceptible to erosion and weathering. The lower member of the Dox Formation consists of silty-sandstone and sandstone, and some interbedded argillaceous beds, that form stair-stepped, cliff-slope topography. The bulk of the Dox Formation typically forms rounded and sloping hill topography that occupies an unusually broad section of the canyon.

Sixtymile Formation

The Sixtymile Formation is the uppermost unit of the Grand Canyon Supergroup. It is a very thin accumulation of sandstone, siltstone, and breccia that is exposed in only four places in the Chuar Valley. These exposures occur atop Nankoweap Butte and within Awatubi and Sixtymile Canyons in the eastern Grand Canyon, Arizona. The maximum preserved thickness of the Sixtymile Formation is about 60 meters (200 ft). The actual depositional thickness of the Sixtymile Formation is unknown owing to erosion during the formation of the Great Unconformity and prior to deposition of the Tapeats Sandstone.

Ardvreck Group

The Ardvreck Group is a stratigraphic group of early Cambrian age found in the Northwest Highlands of Scotland. It lies unconformably on gneisses of the Lewisian complex or sandstones of the Torridonian Supergroup. It consists of two formations, the basal quartzites and quartz arenites of the Eriboll Formation and the overlying dolomitic siltstones and sandstones and quartz arenites of the An-t-Sron Formation. It is overlain conformably by the Ghrudaidh Formation of the Durness Group. The Ardvreck Group was at one time known as the "Eriboll Group".

References

  1. 1 2 Parnell, J.; Mark D.; Fallick A.E.; Boyce A.; Thackrey S. (2011). "The age of the Mesoproterozoic Stoer Group sedimentary and impact deposits, NW Scotland". Journal of the Geological Society. 168 (2): 349–358. doi:10.1144/0016-76492010-099.
  2. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Park, R.G.; Stewart, A.D.; Wright, D.T. (2003). "3. The Hebridean terrane". In Trewin N.H. The Geology of Scotland. London: Geological Society. pp. 45–61. ISBN   978-1-86239-126-0 . Retrieved June 23, 2010.
  3. C.Michael Hogan, (2011) Sea of the Hebrides. Eds. P. Saundry & C.J.Cleveland. Encyclopedia of Earth. National Council for Science and the Environment. Washington DC.
  4. 1 2 3 4 5 Stewart, A.D. (2002). The later Proterozoic Torridonian rocks of Scotland: their sedimentology, geochemistry and origin. Memoir. 24. London: Geological Society. p. 130. ISBN   978-1-86239-103-1.
  5. Amor, K.; Hesselbo S.P.; Porcelli, D.; Thackrey S.; Parnell J. (2008). "A Precambrian proximal ejecta blanket from Scotland". Geology. 36 (4): 303–306. doi:10.1130/G24454A.1.
  6. 1 2 3 4 Kinnaird, T.C.; Prave A.R.; Kirkland C.L.; Horstwood M.; Parrish R.; Batchelor R.A.B. (2007). "The late Mesoproterozoic–early Neoproterozoic tectonostratigraphic evolution of NW Scotland: the Torridonian revisited". Journal of the Geological Society. 164 (3): 541–551. doi:10.1144/0016-76492005-096.
  7. Peach, B.N.; Horne, J.; Gunn, W.; Clough C.T.; Hinxman L.W.; Teall J.J.H. (1907). The Geological Structure of the NW Highlands of Scotland. Memoirs. Geological Survey of Great Britain. p. 668.