Tramlining

Last updated
Rain grooved road that can cause tramlining CASR85 SanJose.jpg
Rain grooved road that can cause tramlining

Tramlining is the tendency of a vehicle's wheels to follow the contours in the surface upon which it runs. [1] [2] [3] The term comes from the tendency of a car's wheels to follow the normally recessed rails of street trams, without driver input in the same way that the train does. [3] The same effect is sometimes called nibbling.

Contents

Tramlining can usually be blamed on tires, and its incidence depends greatly on the type of the tire [3] and its state of wear. Although not normally dangerous, at very high speeds it can become a source of instability.

Vehicles with large and wide low-profile tires are more prone to the effects [1] [3] as well as vehicles which have wheels fitted that are larger than the manufacturer's recommendation or have reinforced sidewalls. [3] People who are relatively inexperienced with driving with this tendency will feel that they have to make continual course corrections and it is very easy to overcompensate the steering, which could potentially lead to veering off the road especially if the road is a narrow track/country road.

The effects of tramlining can be eased by subjecting the vehicle to an inspection and calibration of the wheels (i.e. a full geometry check) or replacing the tires with non-reinforced (soft-sidewall) tires.

See also

Related Research Articles

<span class="mw-page-title-main">Tire</span> Ring-shaped covering that fits around a wheels rim

A tire or tyre is a ring-shaped component that surrounds a wheel's rim to transfer a vehicle's load from the axle through the wheel to the ground and to provide traction on the surface over which the wheel travels. Most tires, such as those for automobiles and bicycles, are pneumatically inflated structures, which also provide a flexible cushion that absorbs shock as the tire rolls over rough features on the surface. Tires provide a footprint, called a contact patch, that is designed to match the weight of the vehicle with the bearing strength of the surface that it rolls over by providing a bearing pressure that will not deform the surface excessively.

<span class="mw-page-title-main">Racing slick</span> Type of tire used in auto racing

A racing slick or slick tyre is a type of tyre that has a smooth tread used mostly in auto racing. The first production slick tyre was developed by M&H Tires in the early 1950s for use in drag racing. By eliminating any grooves cut into the tread, such tyres provide the largest possible contact patch to the road, and maximize dry traction for any given tyre dimension; see Performance. Slick tyres are used on race tracks and in road racing, where acceleration, steering and braking require maximum traction from each wheel. Slick tyres are typically used on only the driven (powered) wheels in drag racing, where the only concern is maximum traction to put power to the ground, and are not used in rallying.

<span class="mw-page-title-main">Off-road vehicle</span> Automotive vehicle capable of driving across difficult terrain beyond sealed roads

An off-road vehicle (ORV), sometimes referred to as an off-highway vehicle (OHV), overland vehicle, or adventure vehicle, is considered to be any type of vehicle which is capable of driving off paved or gravel surfaces, such as trails and forest roads that have rough and low traction surfaces.

Tire rotation is the practice of moving the wheels and tires of an automobile from one position to another, to ensure even tire wear. Even tire wear extends the useful life of a set of tires, but the value of this is disputed.

Automobile handling and vehicle handling are descriptions of the way a wheeled vehicle responds and reacts to the inputs of a driver, as well as how it moves along a track or road. It is commonly judged by how a vehicle performs particularly during cornering, acceleration, and braking as well as on the vehicle's directional stability when moving in steady state condition.

<span class="mw-page-title-main">Car tuning</span> Modification of a cars performance

Car tuning is the modification of a car to optimise it for a different set of performance requirements from those it was originally designed to meet. Most commonly this is higher engine performance and dynamic handling characteristics but cars may also be altered to provide better fuel economy, or smoother response. The goal when tuning is the improvement of a vehicle's overall performance in response to the user's needs. Often, tuning is done at the expense of emissions performance, component reliability and occupant comfort.

<span class="mw-page-title-main">Wheel sizing</span> Measuring a wheel rim diameter to find the wheels size

The wheel size for a motor vehicle or similar wheel has a number of parameters.

<span class="mw-page-title-main">Aquaplaning</span> Loss of traction due to water buildup under tires

Aquaplaning or hydroplaning by the tires of a road vehicle, aircraft or other wheeled vehicle occurs when a layer of water builds between the wheels of the vehicle and the road surface, leading to a loss of traction that prevents the vehicle from responding to control inputs. If it occurs to all wheels simultaneously, the vehicle becomes, in effect, an uncontrolled sled. Aquaplaning is a different phenomenon from when water on the surface of the roadway merely acts as a lubricant. Traction is diminished on wet pavement even when aquaplaning is not occurring.

<span class="mw-page-title-main">Rolling resistance</span> Force resisting the motion when a body rolls on a surface

Rolling resistance, sometimes called rolling friction or rolling drag, is the force resisting the motion when a body rolls on a surface. It is mainly caused by non-elastic effects; that is, not all the energy needed for deformation of the wheel, roadbed, etc., is recovered when the pressure is removed. Two forms of this are hysteresis losses, and permanent (plastic) deformation of the object or the surface. Note that the slippage between the wheel and the surface also results in energy dissipation. Although some researchers have included this term in rolling resistance, some suggest that this dissipation term should be treated separately from rolling resistance because it is due to the applied torque to the wheel and the resultant slip between the wheel and ground, which is called slip loss or slip resistance. In addition, only the so-called slip resistance involves friction, therefore the name "rolling friction" is to an extent a misnomer.

<span class="mw-page-title-main">Snow chains</span> Devices fitted to the tires of vehicles to improve traction on snow and ice

Snow chains, or tire chains, are devices fitted to the tires of vehicles to provide increased traction when driving through snow and ice.

Torque steer is the unintended influence of engine torque on the steering, especially in front-wheel-drive vehicles. For example, during heavy acceleration, the steering may pull to one side, which may be disturbing to the driver. The effect is manifested either as a tugging sensation in the steering wheel, or a veering of the vehicle from the intended path. Torque steer is directly related to differences in the forces in the contact patches of the left and right drive wheels. The effect becomes more evident when high torques are applied to the drive wheels because of a high overall reduction ratio between the engine and wheels, high engine torque, or some combination of the two. Torque steer is distinct from steering kickback.

<span class="mw-page-title-main">Rim (wheel)</span> Outer part of a wheel on which the tire is mounted

The rim is the "outer edge of a wheel, holding the tire". It makes up the outer circular design of the wheel on which the inside edge of the tire is mounted on vehicles such as automobiles. For example, on a bicycle wheel the rim is a large hoop attached to the outer ends of the spokes of the wheel that holds the tire and tube. In cross-section, the rim is deep in the center and shallow at the outer edges, thus forming a "U" shape that supports the bead of the tire casing.

A run-flat tire is a pneumatic vehicle tire designed to resist the effects of deflation when punctured, allowing the vehicle to continue to be driven at reduced speeds for limited distances. First developed by tire manufacturer Michelin in the 1930s, run-flat tires were introduced to the public market in the 1980s. They have increased in popularity over time.

<span class="mw-page-title-main">Tire code</span> Alphanumeric code specifying tire sizes and limits

Automotive tires are described by an alphanumeric tire code or tyre code, which is generally molded into the sidewall of the tire. This code specifies the dimensions of the tire, and some of its key limitations, such as load-bearing ability, and maximum speed. Sometimes the inner sidewall contains information not included on the outer sidewall, and vice versa.

Plus sizing is the practice of replacing an automotive wheel with one of a larger diameter fitted with a new tire of lower aspect ratio so that the new tire has close to the same diameter and circumference as the original tire to minimize any changes in speedometer accuracy, torque and traction control, while reducing sidewall flex and (generally) increasing cornering ability.

Tire uniformity refers to the dynamic mechanical properties of pneumatic tires as strictly defined by a set of measurement standards and test conditions accepted by global tire and car makers.

<span class="mw-page-title-main">Bead breaker</span> Automotive Tool

A bead breaker is a tool used for separating tires from rims. The innermost diameter of the tire that interfaces with the rim of a wheel is called the tire bead. The bead is a thicker section of rubber, and is reinforced with braided steel cables, called the bead bundle. The surface of the bead creates a seal between the tire and rim on radial and bias-ply tires.

<span class="mw-page-title-main">Tire maintenance</span>

Inspection and maintenance of tires is about inspecting for wear and damage on tires so that adjustments or measures can be made to take better care of the tires so that they last longer, or to detect or predict if repairs or replacement of the tires becomes necessary. Tire maintenance for motor vehicles is based on several factors. The chief reason for tire replacement is friction from moving contact with road surfaces, causing the tread on the outer perimeter of tires to eventually wear away. When the tread depth becomes too shallow, like for example below 3.2 mm, the tire is worn out and should be replaced. The same rims can usually be used throughout the lifetime of the car. Other problems encountered in tire maintenance include:

<span class="mw-page-title-main">Bicycle tire</span> Tire that fits on the wheel of a bicycle

A bicycle tire is a tire that fits on the wheel of a bicycle or similar vehicle. These tires may also be used on tricycles, wheelchairs, and handcycles, frequently for racing. Bicycle tires provide an important source of suspension, generate the lateral forces necessary for balancing and turning, and generate the longitudinal forces necessary for propulsion and braking. Although the use of a pneumatic tire greatly reduces rolling resistance compared to the use of a rigid wheel or solid tire, the tires are still typically the second largest source, after wind resistance, of power consumption on a level road. The modern detachable pneumatic bicycle tire contributed to the popularity and eventual dominance of the safety bicycle.

<span class="mw-page-title-main">Groove wander</span>

Groove wander, similar to tramlining, is a lateral force acting on a vehicle's wheel resulting from the combination of rain grooves and contoured deformations in the road surface upon which the wheel runs.

References

  1. 1 2 "Characteristics of Wide Low Aspect Ratio Tires, Vehicle Pulls Left or Right, Wanders, Follows Depressions in Road Surface, Tramlining" (PDF), GM bulletin 17-NA-087, National Highway Traffic Safety Administration, p. 1, March 2017, retrieved 2023-12-24
  2. Achrifi, Samir (2019-07-01). Tire and Vehicle Dynamics on Rutted Roads (PDF). Eindhoven University of Technology.
  3. 1 2 3 4 5 "TRAMLINING: ZJAWISKO FALOWANIA". www.oponylider.pl (in Polish). Retrieved 2023-12-24.