Trans-2-Phenyl-1-cyclohexanol

Last updated
trans-2-Phenyl-1-cyclohexanol
(1S,2R)-2-phenylcyclohexanol-2D-skeletal.png
(1S,2R)-2-Phenylcyclohexanol
Names
Other names
trans-2-Phenylcyclohexanol
Identifiers
3D model (JSmol)
ChemSpider
PubChem CID
UNII
Properties
C12H16O
Molar mass 176.259 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)
Infobox references

trans-2-Phenyl-1-cyclohexanol is an organic compound. The two enantiomers of this compound are used in organic chemistry as chiral auxiliaries.

Preparation

The enantioselective synthesis was accomplished by J. K. Whitesell by adding Pseudomonas fluorescens lipase to racemic trans-2-phenylcyclohexyl chloroacetate. [1] [2] This enzyme is able to hydrolyze the ester bond of the (−)-enantiomer but not the (+)-enantiomer. The (−)-cyclohexanol and the (+)-ester are separated by fractional crystallization and the isolated (+)-ester hydrolyzed to the (+)-cyclohexanol in a separate step.

The enantiomers have also been prepared by the Sharpless asymmetric dihydroxylation of 1-phenylcyclohexene to the diol followed by the selective reduction of the 1-hydroxyl group by Raney nickel. [3]

trans-2-Phenyl-1-hexanol enantiomers in chair conformations Trans-2-phenyl-1-hexanol enantiomers.gif
trans-2-Phenyl-1-hexanol enantiomers in chair conformations

Related Research Articles

Sharpless asymmetric dihydroxylation is the chemical reaction of an alkene with osmium tetroxide in the presence of a chiral quinine ligand to form a vicinal diol. The reaction has been applied to alkenes of virtually every substitution, often high enantioselectivities are realized. Asymmetric dihydroxylation reactions are also highly site selective, providing products derived from reaction of the most electron-rich double bond in the substrate.

Hydrazone

Hydrazones are a class of organic compounds with the structure R
1
R
2
C
=NNH
2
. They are related to ketones and aldehydes by the replacement of the oxygen with the NNH
2
functional group. They are formed usually by the action of hydrazine on ketones or aldehydes.

Organic synthesis is a special branch of chemical synthesis and is concerned with the intentional construction of organic compounds. Organic molecules are often more complex than inorganic compounds, and their synthesis has developed into one of the most important branches of organic chemistry. There are several main areas of research within the general area of organic synthesis: total synthesis, semisynthesis, and methodology.

Enantioselective synthesis

Enantioselective synthesis, also called asymmetric synthesis, is a form of chemical synthesis. It is defined by IUPAC as: a chemical reaction in which one or more new elements of chirality are formed in a substrate molecule and which produces the stereoisomeric products in unequal amounts.

In chemistry, stereoselectivity is the property of a chemical reaction in which a single reactant forms an unequal mixture of stereoisomers during a non-stereospecific creation of a new stereocenter or during a non-stereospecific transformation of a pre-existing one. The selectivity arises from differences in steric effects and electronic effects in the mechanistic pathways leading to the different products. Stereoselectivity can vary in degree but it can never be total since the activation energy difference between the two pathways is finite. Both products are at least possible and merely differ in amount. However, in favorable cases, the minor stereoisomer may not be detectable by the analytic methods used.

The Michael reaction or Michael addition is the nucleophilic addition of a carbanion or another nucleophile to an α,β-unsaturated carbonyl compound containing an electron withdrawing group. It belongs to the larger class of conjugate additions. This is one of the most useful methods for the mild formation of C–C bonds. Many asymmetric variants exist.

Sulfonium

A sulfonium ion, also known as sulphonium ion or sulfanium ion, is a positively charged ion (a "cation") featuring three organic substituents attached to sulfur. These organosulfur compounds have the formula [SR3]+. Together with a negatively charged counterion, they give sulfonium salts. They are typically colorless solids that are soluble in organic solvent.

(<i>E</i>)-Stilbene

(E)-Stilbene, commonly known as trans-stilbene, is an organic compound represented by the condensed structural formula C6H5CH=CHC6H5. Classified as a diarylethene, it features a central ethylene moiety with one phenyl group substituents on each end of the carbon–carbon double bond. It has an (E) stereochemistry, meaning that the phenyl groups are located on opposite sides of the double bond, the opposite of its geometric isomer, cis-stilbene. Trans-stilbene occurs as a white crystalline solid at room temperature and is highly soluble in organic solvents. It can be converted to cis-stilbene photochemically, and further reacted to produce phenanthrene.

Chiral auxiliary

A chiral auxiliary is a stereogenic group or unit that is temporarily incorporated into an organic compound in order to control the stereochemical outcome of the synthesis. The chirality present in the auxiliary can bias the stereoselectivity of one or more subsequent reactions. The auxiliary can then be typically recovered for future use.

Dihydroxylation is the process by which an alkene is converted into a vicinal diol. Although there are many routes to accomplish this oxidation, the most common and direct processes use a high-oxidation-state transition metal. The metal is often used as a catalyst, with some other stoichiometric oxidant present. In addition, other transition metals and non-transition metal methods have been developed and used to catalyze the reaction.

In organic chemistry, kinetic resolution is a means of differentiating two enantiomers in a racemic mixture. In kinetic resolution, two enantiomers react with different reaction rates in a chemical reaction with a chiral catalyst or reagent, resulting in an enantioenriched sample of the less reactive enantiomer. As opposed to chiral resolution, kinetic resolution does not rely on different physical properties of diastereomeric products, but rather on the different chemical properties of the racemic starting materials. This enantiomeric excess (ee) of the unreacted starting material continually rises as more product is formed, reaching 100% just before full completion of the reaction. Kinetic resolution relies upon differences in reactivity between enantiomers or enantiomeric complexes. Kinetic resolution is a concept in organic chemistry and can be used for the preparation of chiral molecules in organic synthesis. Kinetic resolution reactions utilizing purely synthetic reagents and catalysts are much less common than the use of enzymatic kinetic resolution in application towards organic synthesis, although a number of useful synthetic techniques have been developed in the past 30 years.

Boronic acid

A boronic acid is a compound related to boric acid in which one of the three hydroxyl groups is replaced by an alkyl or aryl group. As a compound containing a carbon–boron bond, members of this class thus belong to the larger class of organoboranes. Boronic acids act as Lewis acids. Their unique feature is that they are capable of forming reversible covalent complexes with sugars, amino acids, hydroxamic acids, etc.. The pKa of a boronic acid is ~9, but they can form tetrahedral boronate complexes with pKa ~7. They are occasionally used in the area of molecular recognition to bind to saccharides for fluorescent detection or selective transport of saccharides across membranes.

Diphenyl disulfide

Diphenyl disulfide is the chemical compound with the formula (C6H5S)2. This colorless crystalline material is often abbreviated Ph2S2. It is one of the more commonly encountered organic disulfides in organic synthesis. Minor contamination by thiophenol is responsible for the disagreeable odour associated with this compound.

Prolinol is a chiral amino-alcohol that is used as a chiral building block in organic synthesis. It exists as two enantiomers: the D and L forms.

Erlenmeyer–Plöchl azlactone and amino-acid synthesis

The Erlenmeyer–Plöchl azlactone and amino acid synthesis, named after Friedrich Gustav Carl Emil Erlenmeyer who partly discovered the reaction, is a series of chemical reactions which transform an N-acyl glycine to various other amino acids via an oxazolone.

Styrene oxide Chemical compound

Styrene oxide is an epoxide derived from styrene. It can be prepared by epoxidation of styrene with peroxybenzoic acid, in the Prilezhaev reaction:

Diethyl tartrate

Diethyl tartrate is an organic compound with the formula (HOCHCO2Et)2 (Et = ethyl). Three stereoisomers exist, R,R-, S,S-, and R,S (=S,R-). They are the ethyl esters of the respective R,R-, S,S-, and R,S-tartaric acids. The R,R- and S,S- isomers are enantiomeric, being mirror images. The meso stereoisomer is not chiral. The chiral isomer is far more common.

Oxophilicity is the tendency of certain chemical compounds to form oxides by hydrolysis or abstraction of an oxygen atom from another molecule, often from organic compounds. The term is often used to describe metal centers, commonly the early transition metals such as titanium, niobium, and tungsten. Oxophilic metals are classified as "hard" within the HSAB theory. Many main group compounds are also oxophilic, such as derivatives of aluminium, silicon, and phosphorus(V). The handling of oxophilic compounds often requires air-free techniques.

Asymmetric ester hydrolysis with pig liver esterase is the enantioselective conversion of an ester to a carboxylic acid through the action of the enzyme pig liver esterase. Asymmetric ester hydrolysis involves the selective reaction of one of a pair of either enantiotopic or enantiomorphic ester groups.

Triphenylcarbethoxymethylenephosphorane

Triphenylcarbethoxymethylenephosphorane is an organophosphorus compound with the chemical formula Ph3PCHCO2Et (Ph = phenyl, Et = ethyl). It is a white solid that is soluble in organic solvents.

References

  1. J. K. Whitesell, H. H. Chen and R. M. Lawrence (1985). "trans-2-Phenylcyclohexanol. A powerful and readily available chiral auxiliary". J. Org. Chem. 50 (23): 4663–4664. doi:10.1021/jo00223a055.
  2. A. Schwartz, P. Madan, J. K. Whitesell, and R. M. Lawrence (1993). "Lipase-Catalyzed Kinetic Resolution of Alcohols via Chloroacetate Esters: (−)-(1R,2S)-Trans-2-Phenylcyclohexanol And (+)-(1S,2R)-Trans-2-Phenylcyclohexanol". Organic Syntheses .CS1 maint: multiple names: authors list (link); Collective Volume, 8, p. 516
  3. Javier Gonzalez, Christine Aurigemma, and Larry Truesdale (2004). "Sharpless bishydroxylation procedure to trans-2-phenyl-1-cyclohexanol". Organic Syntheses .CS1 maint: multiple names: authors list (link); Collective Volume, 10, p. 603