This article needs additional citations for verification .(December 2016) |
In astronomy, a transit (or astronomical transit) is a phenomenon when a celestial body passes directly between a larger body and the observer. As viewed from a particular vantage point, the transiting body appears to move across the face of the larger body, covering a small portion of it. [1]
The word "transit" refers to cases where the nearer object appears smaller than the more distant object. Cases where the nearer object appears larger and completely hides the more distant object are known as occultations.
However, the probability of seeing a transiting planet is low because it is dependent on the alignment of the three objects in a nearly perfectly straight line. [2] Many parameters of a planet and its parent star can be determined based on the transit.
One example of a transit involves the motion of a planet between a terrestrial observer and the Sun. This can happen only with inferior planets, namely Mercury and Venus (see transit of Mercury and transit of Venus). However, because a transit is dependent on the point of observation, the Earth itself transits the Sun if observed from Mars. In the solar transit by the Moon captured during calibration of the STEREO B spacecraft's ultraviolet imaging, the Moon appears much smaller than it does when seen from Earth, because the spacecraft–Moon separation was several times greater than the Earth–Moon distance.
The term can also be used to describe the motion of a satellite across its parent planet, for instance one of the Galilean satellites (Io, Europa, Ganymede, Callisto) across Jupiter, as seen from Earth.
Although rare, cases where four bodies are lined up do happen. One of these events occurred on 27 June 1586, when Mercury transited the Sun as seen from Venus at the same time as a transit of Mercury from Saturn and a transit of Venus from Saturn. [ citation needed ]
No missions were planned to coincide with the transit of Earth visible from Mars on 11 May 1984 and the Viking missions had been terminated a year previously. Consequently, the next opportunity to observe such an alignment will be in 2084.
On 21 December 2012, the Cassini–Huygens probe, in orbit around Saturn, observed the planet Venus transiting the Sun. [3]
On 3 June 2014, the Mars rover Curiosity observed the planet Mercury transiting the Sun, marking the first time a planetary transit has been observed from a celestial body besides Earth. [4]
In rare cases, one planet can pass in front of another. If the nearer planet appears smaller than the more distant one, the event is called a mutual planetary transit.
Exoplanet Detection
The transit method can be used to discover exoplanets. As a planet eclipses/transits its host star it will block a portion of the light from the star. If the planet transits in-between the star and the observer the change in light can be measured to construct a light curve. Light curves are measured with a charge-coupled device. The light curve of a star can disclose several physical characteristics of the planet and star, such as density. Multiple transit events must be measured to determine the characteristics which tend to occur at regular intervals. Multiple planets orbiting the same host star can cause transit-timing variations (TTV). TTV is caused by the gravitational forces of all orbiting bodies acting upon each other. The probability of seeing a transit from Earth is low, however. The probability is given by the following equation.
where Rstar and Rplanet are the radius of the star and planet, respectively, and a is the semi-major axis. Because of the low probability of a transit in any specific system, large selections of the sky must be regularly observed in order to see a transit. Hot Jupiters are more likely to be seen because of their larger radius and short semi-major axis. In order to find Earth-sized planets, red dwarf stars are observed because of their small radius. Even though transiting has a low probability it has proven itself to be a good technique for discovering exoplanets.
In recent years, the discovery of extrasolar planets has prompted interest in the possibility of detecting their transits across their own stellar primaries. HD 209458b was the first such transiting planet to be detected.
The transit of celestial objects is one of the few key phenomena used today for the study of exoplanetary systems. Today, transit photometry is the leading form of exoplanet discovery. [5] As an exoplanet moves in front of its host star there is a dimming in the luminosity of the host star that can be measured. [6] Larger planets make the dip in luminosity more noticeable and easier to detect. Followup observations using other methods are often carried out to ensure it is a planet.
There are currently (December 2018) 2345 planets confirmed with Kepler light curves for stellar host. [7]
During a transit there are four "contacts", when the circumference of the small circle (small body disk) touches the circumference of the large circle (large body disk) at a single point. Historically, measuring the precise time of each point of contact was one of the most accurate ways to determine the positions of astronomical bodies. The contacts happen in the following order:
A fifth named point is that of greatest transit, when the apparent centers of the two bodies are nearest to each other, halfway through the transit. [8]
Since transit photometry allows for scanning large celestial areas with a simple procedure, it has been the most popular and successful form of finding exoplanets in the past decade and includes many projects, some of which have already been retired, others in use today, and some in progress of being planned and created. The most successful projects include HATNet, KELT, Kepler, and WASP, and some new and developmental stage missions such as TESS, HATPI, and others which can be found among the List of Exoplanet Search Projects.
HATNet Project is a set of northern telescopes in Fred Lawrence Whipple Observatory, Arizona and Mauna Kea Observatories, HI, and southern telescopes around the globe, in Africa, Australia, and South America, under the HATSouth branch of the project. [9] These are small aperture telescopes, just like KELT, and look at a wide field which allows them to scan a large area of the sky for possible transiting planets. In addition, their multitude and spread around the world allows for 24/7 observation of the sky so that more short-period transits can be caught. [10]
A third sub-project, HATPI, is currently under construction and will survey most of the night sky seen from its location in Chile. [11]
KELT is a terrestrial telescope mission designed to search for transiting systems of planets of magnitude 8<M<10. It began operation in October 2004 in Winer Observatory and has a southern companion telescope added in 2009. [12] KELT North observes "26-degree wide strip of sky that is overhead from North America during the year", while KELT South observes single target areas of the size 26 by 26 degrees. Both telescopes can detect and identify transit events as small as a 1% flux dip, which allows for detection of planetary systems similar to those in our planetary system. [13] [14]
The Kepler satellite served the Kepler mission between 7 March 2009 and 11 May 2013, where it observed one part of the sky in search of transiting planets within a 115 square degrees of the sky around the Cygnus, Lyra, and Draco constellations. [15] After that, the satellite continued operating until 15 November 2018, this time changing its field along the ecliptic to a new area roughly every 75 days due to reaction wheel failure. [16]
TESS was launched on 18 April 2018, and is planned to survey most of the sky by observing it strips defined along the right ascension lines for 27 days each. Each area surveyed is 27 by 90 degrees. Because of the positioning of sections, the area near TESS's rotational axis will be surveyed for up to 1 year, allowing for the identification of planetary systems with longer orbital periods.
A planet is a large astronomical body that is neither a star nor a stellar remnant. There are competing scientific definitions of a "planet". In the dynamicist definition adopted by the International Astronomical Union (IAU), a planet is a non-stellar body that is massive enough to be rounded by its own gravity, that directly orbits a star, and that has cleared its orbital zone of competing objects. The IAU has also declared that there are eight planets in the Solar System, independently of the formal definition. In the geological definition used by most planetologists, a planet is a rounded sub-stellar body, possibly a satellite. In addition to the eight Solar planets accepted by the IAU, these include dwarf planets such as Eris and Pluto and planetary-mass moons. Bodies meeting the geological definition are sometimes called "planetary-mass objects" or "planemos" for short.
In astronomy, a conjunction occurs when two astronomical objects or spacecraft have either the same right ascension or the same ecliptic longitude, usually as observed from Earth. The astronomical symbol for conjunction is ☌ and handwritten . The conjunction symbol is not used in modern astronomy. It continues to be used in astrology.
A transit of Mercury across the Sun takes place when the planet Mercury passes directly (transits) between the Sun and a superior planet, becoming visible against the solar disk. During a transit, Mercury appears as a tiny black dot moving across the disk of the Sun.
The Kepler space telescope is a retired space telescope launched by NASA in 2009 to discover Earth-size planets orbiting other stars. Named after astronomer Johannes Kepler, the spacecraft was launched into an Earth-trailing heliocentric orbit. The principal investigator was William J. Borucki. After nine and a half years of operation, the telescope's reaction control system fuel was depleted, and NASA announced its retirement on October 30, 2018.
Any planet is an extremely faint light source compared to its parent star. For example, a star like the Sun is about a billion times as bright as the reflected light from any of the planets orbiting it. In addition to the intrinsic difficulty of detecting such a faint light source, the light from the parent star causes a glare that washes it out. For those reasons, very few of the exoplanets reported as of April 2014 have been observed directly, with even fewer being resolved from their host star.
Discovery and exploration of the Solar System is observation, visitation, and increase in knowledge and understanding of Earth's "cosmic neighborhood". This includes the Sun, Earth and the Moon, the major planets Mercury, Venus, Mars, Jupiter, Saturn, Uranus, and Neptune, their satellites, as well as smaller bodies including comets, asteroids, and dust.
Kepler-10, formerly known as KOI-72, is a Sun-like star in the constellation of Draco that lies 187 parsecs from Earth. Kepler-10 was targeted by NASA's Kepler spacecraft, as it was seen as the first star identified by the Kepler mission that could be a possible host to a small, transiting exoplanet. The star is slightly less massive, slightly larger, and slightly cooler than the Sun; at an estimated 10.4 billion years in age, Kepler-10 is almost 2.6 times the age of the Sun. Kepler-10 is host to a planetary system made up of at least two planets. Kepler-10b, the first undeniably rocky planet, was discovered in its orbit after eight months of observation and announced on January 10, 2011. The planet orbits its star closely, completing an orbit every 0.8 days, and has a density similar to that of iron. The second planet, Kepler-10c, was confirmed on May 23, 2011, based on follow-up observations by the Spitzer Space Telescope. The data shows it has an orbital period of 42.3 days and has a radius more than double that of Earth, but a higher density, making it the largest and most massive rocky planet discovered as of June 2014.
Kepler-11g is an exoplanet discovered in the orbit of the sunlike star Kepler-11 by the Kepler spacecraft, a NASA satellite tasked with searching for terrestrial planets. Kepler-11g is the outermost of the star's six planets. The planet orbits at a distance of nearly half the mean distance between Earth and the Sun. It completes an orbit every 118 days, placing it much further from its star than the system's inner five planets. Its estimated radius is a little over three times that of Earth, i.e. comparable to Neptune's size. Kepler-11g's distance from the inner planets made its confirmation more difficult than that of the inner planets, as scientists had to work to exhaustively disprove all reasonable alternatives before Kepler-11g could be confirmed. The planet's discovery, along with that of the other Kepler-11 planets, was announced on February 2, 2011. According to NASA, the Kepler-11 planets form the flattest and most compact system yet discovered.
The NASA Exoplanet Archive is an online astronomical exoplanet catalog and data service that collects and serves public data that support the search for and characterization of extra-solar planets (exoplanets) and their host stars. It is part of the Infrared Processing and Analysis Center and is on the campus of the California Institute of Technology (Caltech) in Pasadena, CA. The archive is funded by NASA and was launched in early December 2011 by the NASA Exoplanet Science Institute as part of NASA's Exoplanet Exploration Program. In June 2019, the archive's collection of confirmed exoplanets surpassed 4,000.
Kepler-37, also known as UGA-1785, is a G-type main-sequence star located in the constellation Lyra 209 light years from Earth. It is host to exoplanets Kepler-37b, Kepler-37c, Kepler-37d and Kepler-37e, all of which orbit very close to it. Kepler-37 has a mass about 80.3 percent of the Sun's and a radius about 77 percent as large. It has a temperature similar to that of the Sun, but a bit cooler at 5,417 K. It has about half the metallicity of our Sun. With an age of roughly 6 billion years, it is slightly older than the Sun, but is still a main-sequence star. Until January 2015, Kepler-37 was the smallest star to be measured via asteroseismology.
Kepler-62e is a super-Earth exoplanet discovered orbiting within the habitable zone of Kepler-62, the second outermost of five such planets discovered by NASA's Kepler spacecraft. Kepler-62e is located about 1,200 light-years from Earth in the constellation of Lyra. The exoplanet was found using the transit method, in which the dimming effect that a planet causes as it crosses in front of its star is measured. Kepler-62e may be a terrestrial or ocean-covered planet; it lies in the inner part of its host star's habitable zone.
Kepler-62c is an approximately Mars-sized exoplanet discovered in orbit around the star Kepler-62, the second innermost of five discovered by NASA's Kepler spacecraft around Kepler-62. At the time of discovery it was the second-smallest exoplanet discovered and confirmed by the Kepler spacecraft, after Kepler-37b. It was found using the transit method, in which the dimming that a planet causes as it crosses in front of its star is measured. Its stellar flux is 25 ± 3 times Earth's. It is similar to Mercury.
Kepler-186f is an exoplanet orbiting the red dwarf Kepler-186, about 580 light-years from Earth.
Kepler-438b is a confirmed near-Earth-sized exoplanet. It is likely rocky. It orbits on the inner edge of the habitable zone of a red dwarf, Kepler-438, about 472.9 light-years from Earth in the constellation Lyra. It receives 1.4 times our solar flux. The planet was discovered by NASA's Kepler spacecraft using the transit method, in which the dimming effect that a planet causes as it crosses in front of its star is measured. NASA announced the confirmation of the exoplanet on 6 January 2015.
Kepler-442b is a confirmed near-Earth-sized exoplanet, likely rocky, orbiting within the habitable zone of the K-type main-sequence star Kepler-442, about 1,206 light-years (370 pc) from Earth in the constellation of Lyra.
The Next-Generation Transit Survey (NGTS) is a ground-based robotic search for exoplanets. The facility is located at Paranal Observatory in the Atacama desert in northern Chile, about 2 km from ESO's Very Large Telescope and 0.5 km from the VISTA Survey Telescope. Science operations began in early 2015. The astronomical survey is managed by a consortium of seven European universities and other academic institutions from Chile, Germany, Switzerland, and the United Kingdom. Prototypes of the array were tested in 2009 and 2010 on La Palma, and from 2012 to 2014 at Geneva Observatory.
Kepler-452b is a super-Earth exoplanet orbiting within the inner edge of the habitable zone of the sunlike star Kepler-452 and is the only planet in the system discovered by Kepler. It is located about 1,800 light-years (550 pc) from Earth in the constellation of Cygnus.
Kepler-1229b is a confirmed super-Earth exoplanet, likely rocky, orbiting within the habitable zone of the red dwarf Kepler-1229, located about 870 light years from Earth in the constellation of Cygnus. It was discovered in 2016 by the Kepler space telescope. The exoplanet was found by using the transit method, in which the dimming effect that a planet causes as it crosses in front of its star is measured.
The word "transit" refers to cases where the nearer object appears smaller than the more distant object. Cases where the nearer object appears larger and completely hides the more distant object are known as occultations.
Kepler-1708b is a Jupiter-sized exoplanet orbiting the Sun-like star Kepler-1708, located in the constellation of Cygnus approximately 5,600 light years away from Earth. It was first detected in 2011 by NASA's Kepler mission using the transit method, but was not identified as a candidate planet until 2019. In 2021, a candidate Neptune-sized exomoon in orbit around Kepler-1708b was found by astronomer David Kipping and colleagues in an analysis using Kepler transit data.
Wikimedia Commons has media related to Astronomical transits . |