Trirectangular tetrahedron

Last updated
A trirectangular tetrahedron with its base shown in green and its apex as a solid black disk. It can be constructed by a coordinate octant and a plane crossing all 3 axes away from the origin (x>0; y>0; z>0) and x/a+y/b+z/c<1 2D-simplex.svg
A trirectangular tetrahedron with its base shown in green and its apex as a solid black disk. It can be constructed by a coordinate octant and a plane crossing all 3 axes away from the origin (x>0; y>0; z>0) and x/a+y/b+z/c<1

In geometry, a trirectangular tetrahedron is a tetrahedron where all three face angles at one vertex are right angles. That vertex is called the right angle or apex of the trirectangular tetrahedron and the face opposite it is called the base . The three edges that meet at the right angle are called the legs and the perpendicular from the right angle to the base is called the altitude of the tetrahedron (analogous to the altitude of a triangle).

Contents

Kepler's drawing of a regular tetrahedron inscribed in a cube (on the left), and one of the four trirectangular tetrahedra that surround it (on the right), filling the cube. Kepler's tetrahedron in cube.png
Kepler's drawing of a regular tetrahedron inscribed in a cube (on the left), and one of the four trirectangular tetrahedra that surround it (on the right), filling the cube.

An example of a trirectangular tetrahedron is a truncated solid figure near the corner of a cube or an octant at the origin of Euclidean space. Kepler discovered the relationship between the cube, regular tetrahedron and trirectangular tetrahedron. [1]

Only the bifurcating graph of the Affine Coxeter group has a Trirectangular tetrahedron fundamental domain.

Metric formulas

If the legs have lengths a, b, c, then the trirectangular tetrahedron has the volume [2] [3]

The altitude h satisfies [4]

The area of the base is given by [5]

The solid angle at the right-angled vertex, from which the opposite face (the base) subtends an octant, has measure π/2  steradians, one eighth of the surface area of a unit sphere.

De Gua's theorem

If the area of the base is and the areas of the three other (right-angled) faces are , and , then

This is a generalization of the Pythagorean theorem to a tetrahedron.

Integer solution

Perfect body

Trirectangular bipyramid with edges (240, 117, 44, 125, 244, 267, 44, 117, 240) Smallest perfect trirectangular biparamyd, Jan 2018.svg
Trirectangular bipyramid with edges (240, 117, 44, 125, 244, 267, 44, 117, 240)

The area of the base (a,b,c) is always (Gua) an irrational number. Thus a trirectangular tetrahedron with integer edges is never a perfect body. The trirectangular bipyramid (6 faces, 9 edges, 5 vertices) built from these trirectangular tetrahedrons and the related left-handed ones connected on their bases have rational edges, faces and volume, but the inner space-diagonal between the two trirectangular vertices is still irrational. The later one is the double of the altitude of the trirectangular tetrahedron and a rational part of the (proved) [6] irrational space-diagonal of the related Euler-brick (bc, ca, ab).

Integer edges

Trirectangular tetrahedrons with integer legs and sides of the base triangle exist, e.g. (discovered 1719 by Halcke). Here are a few more examples with integer legs and sides.

    a        b        c        d        e        f 

   240      117       44      125      244      267    275      252      240      348      365      373    480      234       88      250      488      534    550      504      480      696      730      746    693      480      140      500      707      843    720      351      132      375      732      801    720      132       85      157      725      732    792      231      160      281      808      825    825      756      720     1044     1095     1119    960      468      176      500      976     1068   1100     1008      960     1392     1460     1492   1155     1100     1008     1492     1533     1595   1200      585      220      625     1220     1335   1375     1260     1200     1740     1825     1865   1386      960      280     1000     1414     1686   1440      702      264      750     1464     1602   1440      264      170      314     1450     1464

Notice that some of these are multiples of smaller ones. Note also A031173.

Integer faces

Trirectangular tetrahedrons with integer faces and altitude h exist, e.g. without or with coprime .

See also

Related Research Articles

In geometry, an octahedron is a polyhedron with eight faces. One special case is the regular octahedron, a Platonic solid composed of eight equilateral triangles, four of which meet at each vertex. Regular octahedra occur in nature as crystal structures. Many types of irregular octahedra also exist, including both convex and non-convex shapes.

In geometry, a Platonic solid is a convex, regular polyhedron in three-dimensional Euclidean space. Being a regular polyhedron means that the faces are congruent regular polygons, and the same number of faces meet at each vertex. There are only five such polyhedra:

In geometry, a tetrahedron, also known as a triangular pyramid, is a polyhedron composed of four triangular faces, six straight edges, and four vertices. The tetrahedron is the simplest of all the ordinary convex polyhedra.

<span class="mw-page-title-main">Right triangle</span> Triangle containing a 90-degree angle

A right triangle or right-angled triangle, sometimes called an orthogonal triangle or rectangular triangle, is a triangle in which two sides are perpendicular, forming a right angle.

<span class="mw-page-title-main">Solid angle</span> Measure of how large an object appears to an observer at a given point in three-dimensional space

In geometry, a solid angle is a measure of the amount of the field of view from some particular point that a given object covers. That is, it is a measure of how large the object appears to an observer looking from that point. The point from which the object is viewed is called the apex of the solid angle, and the object is said to subtend its solid angle at that point.

<span class="mw-page-title-main">Law of sines</span> Property of all triangles on a Euclidean plane

In trigonometry, the law of sines, sine law, sine formula, or sine rule is an equation relating the lengths of the sides of any triangle to the sines of its angles. According to the law, where a, b, and c are the lengths of the sides of a triangle, and α, β, and γ are the opposite angles, while R is the radius of the triangle's circumcircle. When the last part of the equation is not used, the law is sometimes stated using the reciprocals; The law of sines can be used to compute the remaining sides of a triangle when two angles and a side are known—a technique known as triangulation. It can also be used when two sides and one of the non-enclosed angles are known. In some such cases, the triangle is not uniquely determined by this data and the technique gives two possible values for the enclosed angle.

<span class="mw-page-title-main">Altitude (triangle)</span> Perpendicular line segment from a triangles side to opposite vertex

In geometry, an altitude of a triangle is a line segment through a given vertex and perpendicular to a line containing the side or edge opposite the apex. This (finite) edge and (infinite) line extension are called, respectively, the base and extended base of the altitude. The point at the intersection of the extended base and the altitude is called the foot of the altitude. The length of the altitude, often simply called "the altitude" or "height", symbol h, is the distance between the foot and the apex. The process of drawing the altitude from a vertex to the foot is known as dropping the altitude at that vertex. It is a special case of orthogonal projection.

<span class="mw-page-title-main">Incircle and excircles</span> Circles tangent to all three sides of a triangle

In geometry, the incircle or inscribed circle of a triangle is the largest circle that can be contained in the triangle; it touches the three sides. The center of the incircle is a triangle center called the triangle's incenter.

<span class="mw-page-title-main">Square root of 2</span> Unique positive real number which when multiplied by itself gives 2

The square root of 2 is the positive real number that, when multiplied by itself or squared, equals the number 2. It may be written in mathematics as or . It is an algebraic number, and therefore not a transcendental number. Technically, it should be called the principal square root of 2, to distinguish it from the negative number with the same property.

<span class="mw-page-title-main">5-cell</span> Four-dimensional analogue of the tetrahedron

In geometry, the 5-cell is the convex 4-polytope with Schläfli symbol {3,3,3}. It is a 5-vertex four-dimensional object bounded by five tetrahedral cells. It is also known as a C5, hypertetrahedron, 'pentachoron, pentatope, pentahedroid, tetrahedral pyramid, or 4-simplex (Coxeter's polytope), the simplest possible convex 4-polytope, and is analogous to the tetrahedron in three dimensions and the triangle in two dimensions. The 5-cell is a 4-dimensional pyramid with a tetrahedral base and four tetrahedral sides.

In geometry, a Heronian triangle is a triangle whose side lengths a, b, and c and area A are all positive integers. Heronian triangles are named after Heron of Alexandria, based on their relation to Heron's formula which Heron demonstrated with the example triangle of sides 13, 14, 15 and area 84.

<span class="mw-page-title-main">Median (geometry)</span> Line segment joining a triangles vertex to the midpoint of the opposite side

In geometry, a median of a triangle is a line segment joining a vertex to the midpoint of the opposite side, thus bisecting that side. Every triangle has exactly three medians, one from each vertex, and they all intersect at the triangle's centroid. In the case of isosceles and equilateral triangles, a median bisects any angle at a vertex whose two adjacent sides are equal in length. The concept of a median extends to tetrahedra.

<span class="mw-page-title-main">Special right triangle</span> Right triangle with a feature making calculations on the triangle easier

A special right triangle is a right triangle with some regular feature that makes calculations on the triangle easier, or for which simple formulas exist. For example, a right triangle may have angles that form simple relationships, such as 45°–45°–90°. This is called an "angle-based" right triangle. A "side-based" right triangle is one in which the lengths of the sides form ratios of whole numbers, such as 3 : 4 : 5, or of other special numbers such as the golden ratio. Knowing the relationships of the angles or ratios of sides of these special right triangles allows one to quickly calculate various lengths in geometric problems without resorting to more advanced methods.

<span class="mw-page-title-main">Disphenoid</span> Tetrahedron whose faces are all congruent

In geometry, a disphenoid is a tetrahedron whose four faces are congruent acute-angled triangles. It can also be described as a tetrahedron in which every two edges that are opposite each other have equal lengths. Other names for the same shape are isotetrahedron, sphenoid, bisphenoid, isosceles tetrahedron, equifacial tetrahedron, almost regular tetrahedron, and tetramonohedron.

<span class="mw-page-title-main">Spiral of Theodorus</span> Polygonal curve made from right triangles

In geometry, the spiral of Theodorus is a spiral composed of right triangles, placed edge-to-edge. It was named after Theodorus of Cyrene.

<span class="mw-page-title-main">Pentagon</span> Shape with five sides

In geometry, a pentagon is any five-sided polygon or 5-gon. The sum of the internal angles in a simple pentagon is 540°.

<span class="mw-page-title-main">Pythagorean theorem</span> Relation between sides of a right triangle

In mathematics, the Pythagorean theorem or Pythagoras' theorem is a fundamental relation in Euclidean geometry between the three sides of a right triangle. It states that the area of the square whose side is the hypotenuse is equal to the sum of the areas of the squares on the other two sides.

<span class="mw-page-title-main">Integer triangle</span> Triangle with integer side lengths

An integer triangle or integral triangle is a triangle all of whose side lengths are integers. A rational triangle is one whose side lengths are rational numbers; any rational triangle can be rescaled by the lowest common denominator of the sides to obtain a similar integer triangle, so there is a close relationship between integer triangles and rational triangles.

<span class="mw-page-title-main">Acute and obtuse triangles</span> Triangles without a right angle

An acute triangle is a triangle with three acute angles. An obtuse triangle is a triangle with one obtuse angle and two acute angles. Since a triangle's angles must sum to 180° in Euclidean geometry, no Euclidean triangle can have more than one obtuse angle.

<span class="mw-page-title-main">Octant of a sphere</span> Spherical triangle with three right angles

In geometry, an octant of a sphere is a spherical triangle with three right angles and three right sides. It is sometimes called a trirectangular (spherical) triangle. It is one face of a spherical octahedron.

References

  1. Kepler 1619, p. 181.
  2. Antonio Caminha Muniz Neto (2018). An Excursion through Elementary Mathematics, Volume II: Euclidean Geometry. Springer. p. 437. ISBN   978-3-319-77974-4. Problem 3 on page 437
  3. Alexander Toller; Freya Edholm; Dennis Chen (2019). Proofs in Competition Math: Volume 1. Lulu.com. p. 365. ISBN   978-0-359-71492-6. Exercise 149 on page 365
  4. Eves, Howard Whitley, "Great moments in mathematics (before 1650)", Mathematical Association of America, 1983, p. 41.
  5. Gutierrez, Antonio, "Right Triangle Formulas"
  6. Walter Wyss, "No Perfect Cuboid", arXiv : 1506.02215