Trost ligand

Last updated
Trost ligand
Trost ligand.png
Trost-ligand-from-xtal-1999-Mercury-3D-balls.png
Names
IUPAC name
(1R,2R)-(+)-1,2-diaminocyclohexane-N,N'-bis(2-diphenylphosphinobenzoyl) [ citation needed ]
Preferred IUPAC name
N,N′-[(1R,2R)-cyclohexane-1,2-diyl]bis[2-(diphenylphosphanyl)benzamide]
Other names
Trost's ligand
Identifiers
3D model (JSmol)
ChemSpider
PubChem CID
UNII
  • InChI=1S/C44H40N2O2P2/c47-43(37-27-13-17-31-41(37)49(33-19-5-1-6-20-33)34-21-7-2-8-22-34)45-39-29-15-16-30-40(39)46-44(48)38-28-14-18-32-42(38)50(35-23-9-3-10-24-35)36-25-11-4-12-26-36/h1-14,17-28,31-32,39-40H,15-16,29-30H2,(H,45,47)(H,46,48)/t39-,40-/m0/s1 Yes check.svgY
    Key: AXMSEDAJMGFTLR-ZAQUEYBZSA-N Yes check.svgY
  • InChI=1/C44H40N2O2P2/c47-43(37-27-13-17-31-41(37)49(33-19-5-1-6-20-33)34-21-7-2-8-22-34)45-39-29-15-16-30-40(39)46-44(48)38-28-14-18-32-42(38)50(35-23-9-3-10-24-35)36-25-11-4-12-26-36/h1-14,17-28,31-32,39-40H,15-16,29-30H2,(H,45,47)(H,46,48)/t39-,40-/m0/s1
    Key: AXMSEDAJMGFTLR-ZAQUEYBZBE
  • O=C(N[C@H]4CCCC[C@@H]4NC(=O)c3ccccc3P(c1ccccc1)c2ccccc2)c7ccccc7P(c5ccccc5)c6ccccc6
Properties
C44H40N2O2P2
Molar mass 690.75 g/mol
AppearanceWhite solid
Melting point 136 to 142 °C (277 to 288 °F; 409 to 415 K)
Insoluble; soluble in organic solvents (e.g. acetonitrile, dichloromethane) 1,4-dioxane, methanol, tetrahydrofuran, toluene
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

The Trost ligand is a diphosphine used in the palladium-catalyzed Trost asymmetric allylic alkylation. Other C2-symmetric ligands derived from trans-1,2-diaminocyclohexane (DACH) have been developed, such as the (R,R)-DACH-naphthyl ligand derived from 2-diphenylphosphino-1-naphthalenecarboxylic acid. Related bidentate phosphine-containing ligands derived from other chiral diamines and 2-diphenylphosphinobenzoic acid have also been developed for applications in asymmetric synthesis.

(R,R)-DACH-naphthyl Trost ligand, (1R,2R)-(+)-1,2-diaminocyclohexane-N,N'-bis(2-diphenylphosphino-1-naphthoyl) Trost ligand2.png
(R,R)-DACH-naphthyl Trost ligand, (1R,2R)-(+)-1,2-diaminocyclohexane-N,N′-bis(2-diphenylphosphino-1-naphthoyl)


Related Research Articles

<span class="mw-page-title-main">Diene</span> Covalent compound that contains two double bonds

In organic chemistry, a diene is a covalent compound that contains two double bonds, usually among carbon atoms. They thus contain two alkene units, with the standard prefix di of systematic nomenclature. As a subunit of more complex molecules, dienes occur in naturally occurring and synthetic chemicals and are used in organic synthesis. Conjugated dienes are widely used as monomers in the polymer industry. Polyunsaturated fats are of interest to nutrition.

<span class="mw-page-title-main">Ligand</span> Ion or molecule that binds to a central metal atom to form a coordination complex

In coordination chemistry, a ligand is an ion or molecule with a functional group that binds to a central metal atom to form a coordination complex. The bonding with the metal generally involves formal donation of one or more of the ligand's electron pairs, often through Lewis bases. The nature of metal–ligand bonding can range from covalent to ionic. Furthermore, the metal–ligand bond order can range from one to three. Ligands are viewed as Lewis bases, although rare cases are known to involve Lewis acidic "ligands".

Sharpless asymmetric dihydroxylation is the chemical reaction of an alkene with osmium tetroxide in the presence of a chiral quinine ligand to form a vicinal diol. The reaction has been applied to alkenes of virtually every substitution, often high enantioselectivities are realized, with the chiral outcome controlled by the choice of dihydroquinidine (DHQD) vs dihydroquinine (DHQ) as the ligand. Asymmetric dihydroxylation reactions are also highly site selective, providing products derived from reaction of the most electron-rich double bond in the substrate.

Organopalladium chemistry is a branch of organometallic chemistry that deals with organic palladium compounds and their reactions. Palladium is often used as a catalyst in the reduction of alkenes and alkynes with hydrogen. This process involves the formation of a palladium-carbon covalent bond. Palladium is also prominent in carbon-carbon coupling reactions, as demonstrated in tandem reactions.

The Carroll rearrangement is a rearrangement reaction in organic chemistry and involves the transformation of a β-keto allyl ester into a α-allyl-β-ketocarboxylic acid. This organic reaction is accompanied by decarboxylation and the final product is a γ,δ-allylketone. The Carroll rearrangement is an adaptation of the Claisen rearrangement and effectively a decarboxylative allylation.

In chemistry, transfer hydrogenation is a chemical reaction involving the addition of hydrogen to a compound from a source other than molecular H2. It is applied in laboratory and industrial organic synthesis to saturate organic compounds and reduce ketones to alcohols, and imines to amines. It avoids the need for high-pressure molecular H2 used in conventional hydrogenation. Transfer hydrogenation usually occurs at mild temperature and pressure conditions using organic or organometallic catalysts, many of which are chiral, allowing efficient asymmetric synthesis. It uses hydrogen donor compounds such as formic acid, isopropanol or dihydroanthracene, dehydrogenating them to CO2, acetone, or anthracene respectively. Often, the donor molecules also function as solvents for the reaction. A large scale application of transfer hydrogenation is coal liquefaction using "donor solvents" such as tetralin.

<span class="mw-page-title-main">Galantamine total synthesis</span>

The article concerns the total synthesis of galanthamine, a drug used for the treatment of mild to moderate Alzheimer's disease.

<i>trans</i>-1,2-Diaminocyclohexane Chemical compound

trans-1,2-Diaminocyclohexane is an organic compound with the formula C6H10(NH2)2. This diamine is a building block for C2-symmetric ligands that are useful in asymmetric catalysis.

Asymmetric hydrogenation is a chemical reaction that adds two atoms of hydrogen to a target (substrate) molecule with three-dimensional spatial selectivity. Critically, this selectivity does not come from the target molecule itself, but from other reagents or catalysts present in the reaction. This allows spatial information to transfer from one molecule to the target, forming the product as a single enantiomer. The chiral information is most commonly contained in a catalyst and, in this case, the information in a single molecule of catalyst may be transferred to many substrate molecules, amplifying the amount of chiral information present. Similar processes occur in nature, where a chiral molecule like an enzyme can catalyse the introduction of a chiral centre to give a product as a single enantiomer, such as amino acids, that a cell needs to function. By imitating this process, chemists can generate many novel synthetic molecules that interact with biological systems in specific ways, leading to new pharmaceutical agents and agrochemicals. The importance of asymmetric hydrogenation in both academia and industry contributed to two of its pioneers — William Standish Knowles and Ryōji Noyori — being awarded one half of the 2001 Nobel Prize in Chemistry.

Chiral Lewis acids (CLAs) are a type of Lewis acid catalyst. These acids affect the chirality of the substrate as they react with it. In such reactions, synthesis favors the formation of a specific enantiomer or diastereomer. The method is an enantioselective asymmetric synthesis reaction. Since they affect chirality, they produce optically active products from optically inactive or mixed starting materials. This type of preferential formation of one enantiomer or diastereomer over the other is formally known as asymmetric induction. In this kind of Lewis acid, the electron-accepting atom is typically a metal, such as indium, zinc, lithium, aluminium, titanium, or boron. The chiral-altering ligands employed for synthesizing these acids often have multiple Lewis basic sites that allow the formation of a ring structure involving the metal atom.

<span class="mw-page-title-main">Oxazoline</span> Chemical compound

Oxazoline is a five-membered heterocyclic organic compound with the formula C3H5NO. It is the parent of a family of compounds called oxazolines, which contain non-hydrogenic substituents on carbon and/or nitrogen. Oxazolines are the unsaturated analogues of oxazolidines, and they are isomeric with isoxazolines, where the N and O are directly bonded. Two isomers of oxazoline are known, depending on the location of the double bond.

<span class="mw-page-title-main">Phosphoramidite</span>

A phosphoramidite (RO)2PNR2 is a monoamide of a phosphite diester. The key feature of phosphoramidites is their markedly high reactivity towards nucleophiles catalyzed by weak acids e.c., triethylammonium chloride or 1H-tetrazole. In these reactions, the incoming nucleophile replaces the NR2 moiety.

Enantioselective ketone reductions convert prochiral ketones into chiral, non-racemic alcohols and are used heavily for the synthesis of stereodefined alcohols.

The Tsuji–Trost reaction is a palladium-catalysed substitution reaction involving a substrate that contains a leaving group in an allylic position. The palladium catalyst first coordinates with the allyl group and then undergoes oxidative addition, forming the π-allyl complex. This allyl complex can then be attacked by a nucleophile, resulting in the substituted product.

In Lewis acid catalysis of organic reactions, a metal-based Lewis acid acts as an electron pair acceptor to increase the reactivity of a substrate. Common Lewis acid catalysts are based on main group metals such as aluminum, boron, silicon, and tin, as well as many early and late d-block metals. The metal atom forms an adduct with a lone-pair bearing electronegative atom in the substrate, such as oxygen, nitrogen, sulfur, and halogens. The complexation has partial charge-transfer character and makes the lone-pair donor effectively more electronegative, activating the substrate toward nucleophilic attack, heterolytic bond cleavage, or cycloaddition with 1,3-dienes and 1,3-dipoles.

In asymmetric addition of dialkylzinc compounds to aldehydes dialkyl zinc compounds can be used to perform asymmetric additions to aldehydes, generating substituted alcohols as products. Chiral alcohols are prevalent in many natural products, drugs, and other important organic molecules. Dimethyl zinc is often used with an asymmetric amino alcohol, amino thiol, or other ligand to affect enantioselective additions to aldehydes and ketones. One of the first examples of this process, reported by Noyori and colleagues, features the use of the amino alcohol ligand (−)-3-exo-dimethylaminoisobornenol along with dimethylzinc to add a methyl group asymmetrically to benzaldehyde. Many ligands have been developed for binding zinc during addition reactions. TADDOLs (tetraaryl-1,3-dioxolane-4,5-dimethanols), which are derived from chiral tartaric acid, are a class of diol ligands often used to bind titanium, but have been adopted for zinc addition chemistry. These ligands require relatively low catalyst loadings, and can achieve up to 99% ee in dialkylzinc additions to aromatic and aliphatic aldehydes. Martens and colleagues have used azetidine alcohols as ligands for asymmetric zinc additions. The researchers found that when paired with catalytic n-butyllithium, diethylzinc can add to aromatic aldehydes with ee in the range of 94-100%.

<span class="mw-page-title-main">Phosphoramidite ligand</span>

A phosphoramidite ligand is any phosphorus-based ligand with the general formula P(OR1)(OR2)(NRR'). Chiral versions of these ligands, particularly those derived from the BINOL scaffold, are widely used in enantioselective synthesis. The application of phosphoramidites as effective monodentate ligands for transition metal catalysis was first reported by Dutch chemist Ben Feringa. The introduction of phosphoramidite ligands challenged the notion that high flexibility in the metal–ligand complex is detrimental for high stereocontrol.

In homogeneous catalysis, C2-symmetric ligands refer to ligands that lack mirror symmetry but have C2 symmetry. Such ligands are usually bidentate and are valuable in catalysis. The C2 symmetry of ligands limits the number of possible reaction pathways and thereby increases enantioselectivity, relative to asymmetrical analogues. C2-symmetric ligands are a subset of chiral ligands. Chiral ligands, including C2-symmetric ligands, combine with metals or other groups to form chiral catalysts. These catalysts engage in enantioselective chemical synthesis, in which chirality in the catalyst yields chirality in the reaction product.

Vinylcyclopropane [5+2] cycloaddition is a type of cycloaddition between a vinylcyclopropane (VCP) and an olefin or alkyne to form a seven-membered ring.

Dach is an abbreviation for the organic compound trans-1,2-Diaminocyclohexane.