UCK2

Last updated
UCK2
Protein UCK2 PDB 1udw.png
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases UCK2 , TSA903, UK, UMPK, uridine-cytidine kinase 2
External IDs OMIM: 609329; MGI: 1931744; HomoloGene: 40850; GeneCards: UCK2; OMA:UCK2 - orthologs
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_012474
NM_001363568

NM_030724

RefSeq (protein)

NP_036606
NP_001350497

NP_109649

Location (UCSC) Chr 1: 165.83 – 165.91 Mb Chr 1: 167.05 – 167.11 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Uridine-cytidine kinase 2 (UCK2) is an enzyme that in humans is encoded by the UCK2 gene. [5]

Contents

The protein encoded by this gene catalyzes the phosphorylation of uridine and cytidine to uridine monophosphate (UMP) and cytidine monophosphate (CMP), respectively. This is the first step in the production of the pyrimidine nucleoside triphosphates required for RNA and DNA synthesis. In addition, an allele of this gene may play a role in mediating nonhumoral immunity to Hemophilus influenzae type B. [5]

Structure and mechanism

Uridine-cytidine kinase 2 is a tetramer with molecular mass of about 112 kDa. [6] In the UCK2 monomer, the active site is composed of a five-stranded β-sheet, surrounded by five α-helices and a β-hairpin loop. [7] The β-hairpin loop in particular forms a significant portion of a deep binding pocket for the uridine/cytidine substrate to moderate binding and release of substrate and products. Binding specificity for nucleosides is determined by the His-117 and Tyr-112 residues, which hydrogen bond with the 4-amino group or the 6-oxo group of cytidine and uridine, respectively. [7] A magnesium ion is coordinated in the active site by Glu-135, Ser-34, and Asp-62.

Mechanism for uridine phosphorylation in the active site of UCK2 Mechanism for uridine phosphorylation in UCK2.png
Mechanism for uridine phosphorylation in the active site of UCK2

The Asp-62 residue is responsible for the catalytic activity in the enzyme active site; [8] the acidic side chain of the Asp-62 residue deprotonates the 5’-hydroxyl group on the substrate and activates it to attack the γ-phosphorus of ATP. [9] Structural analyses have shown that the side chain of the catalytic Asp-62 changes conformation before and after the reaction. It has been suggested that this conformational change occurs following phosphorylation, with the negatively charged Asp-62 moving away from the newly attached 5’-phosphate of the UMP/CMP product. [7]

Substrate specificity

Though uridine and cytidine are the physiologically preferred substrates for the enzyme, UCK2 has been shown to phosphorylate other nucleoside analogues. Examples of successfully phosphorylated substrates include 6-azauridine, 5-azacytidine, 4-thiouridine, 5-fluorocytidine, and 5-hydroxyuridine. [10] Alternatively to ATP, GTP has been shown to act comparably as a phosphate donor. [11] This promiscuity enables the important role for UCK2 as an in vivo activator of clinically active nucleoside prodrugs, such as cylcopentenylcytidine. [12]

Despite flexibility for different nucleoside analogs, UCK is unique among other nucleic acid kinases in its specificity for ribose analogs over 2’-deoxyribose forms; whereas other proteins in the NMP kinase family will indiscriminately phosphorylate both deoxyribonucleosides and ribonucleosides, UCK2 only accepts ribonucleosides. [6] This unique selectivity can be induced fit mechanisms and structural features that are unique to UCK2 among the NMP kinase family. Studies have shown that the binding of the cytidine/uridine sugar moiety results in the conformational change to reduce the distance between the His-117 and Arg-176 residues. Without the 2’-hydroxyl group on the sugar moiety, hydrogen bonding with Asp-84 and Arg-166 will be greatly reduced, resulting in diminished conformational change and weakened substrate binding. [6]

Physiological role

Schematic for role of UCK2 in pyrimidine salvage Reaction pathway for UCK2 in pyrimidine biosynthesis.png
Schematic for role of UCK2 in pyrimidine salvage

UCK2 is one of two human uridine-cytidine kinases. The other UCK protein is uridine-cytidine kinase 1, which shares about 70% sequence identity with UCK2. [7] While UCK1 is expressed ubiquitously in a variety of healthy tissues including the liver, skeletal muscle, and heart, UCK2 has only been detected in placental tissue. [10] UCK2, however, is of particular scientific interest due to its overexpression in tumor cell lines, [13] which makes it a target in anti-cancer treatments.

Studies determining the Michaelis-Menten kinetic parameters for these enzymes revealed that UCK2 had a four to sixfold higher binding affinity, faster maximal rates, and greater efficiencies for uridine and cytidine substrates than did UCK1. [10]

Both uridine-cytidine kinases, however, plays a crucial role in the biosynthesis of the pyrimidine nucleotides that compose RNA and DNA. Pyrimidine biosynthesis can occur through two pathways: de novo synthesis, which relies on L-glutamine as the pathway precursor, and salvage, which recycles cellular uridine and cytidine. [14] UCK2 catalyzes the first step of pyrimidine salvage, and is the rate limiting enzyme in the pathway. [15]

Disease relevance

UCK1 is expressed ubiquitously in healthy tissue, but found in low levels in tumor tissues. Conversely, UCK2 has been detected mostly in cancerous cells and healthy placental tissue. The selective expression in target tissues has resulted in the identification of UCK2 as a target in anti-cancer therapies. [16]

One strategy for anti-cancer and anti-viral therapies involves using UCK2 to activate anti-tumor prodrugs through phosphorylation. [17] As an example, 1-(3-C-ethynyl-β-D-ribopentofuranosyl)cytosine (ECyd) and 1-(3-C-ethynyl-β-D-ribopentofuranosyl)uridine (EUrd) are RNA polymerase inhibitors that are under investigation for use as anticancer drugs. [18] The nucleoside, however, only gains its clinical activity after three phosphorylations; therefore, UCK2 plays a key role in initiating the activation of the drug. An alternate strategy involves inhibition of UCK2 to block pyrimidine salvage in cancerous cells. [19] In certain cancer cell lines, pyrimidine biosynthesis primarily occurs through the salvage pathway. [20] Blocking pyrimidine salvage can prevent DNA and RNA biosynthesis, resulting in reduced cell proliferation.

Additionally, research indicates that inhibiting UCK2 can interfere with ribosomal biogenesis, triggering nucleolar stress and activating apoptotic signaling pathways. In response to this stress, ribosomal proteins are released from the nucleolus and bind to MDM2, a protein that regulates p53. by preventing MDM2-mediated p53 ubiquitination, UCK2 inhibition can activate p53, a tumor suppressor that induces apoptosis in cancer cells. [21]

Several studies have demonstrated that UCK2 is overexpressed in variety of cancer types and this overexpression is associated with poor prognosis and reduced survival rates. [22] For example, UCK2 is overexpressed in the early stages of lung cancer, suggesting that its potential use as a biomarker for early diagnosis. [23]

UCK2 can promote cancer cell proliferation through mechanims independent of its catalytic activity or metabolic function. It appears to activate oncogenic pathways, such as STAT3 and enzymes like MMP2 and MMP9, which contirbute to enhanced cell proliferation and metastasis. [24]

Click on genes, proteins and metabolites below to link to respective articles. [§ 1]

[[File:
FluoropyrimidineActivity WP1601.png go to articlego to articlego to articlego to pathway articlego to pathway articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to PubChem Compoundgo to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to pathway articlego to pathway articlego to articlego to articlego to articlego to articlego to articlego to WikiPathwaysgo to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to article
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
FluoropyrimidineActivity WP1601.png go to articlego to articlego to articlego to pathway articlego to pathway articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to PubChem Compoundgo to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to pathway articlego to pathway articlego to articlego to articlego to articlego to articlego to articlego to WikiPathwaysgo to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to article
|alt=Fluorouracil (5-FU) Activity edit]]
Fluorouracil (5-FU) Activity edit
  1. The interactive pathway map can be edited at WikiPathways: "FluoropyrimidineActivity_WP1601".

Related Research Articles

<span class="mw-page-title-main">Nucleotide</span> Biological molecules constituting nucleic acids

Nucleotides are organic molecules composed of a nitrogenous base, a pentose sugar and a phosphate. They serve as monomeric units of the nucleic acid polymers – deoxyribonucleic acid (DNA) and ribonucleic acid (RNA), both of which are essential biomolecules within all life-forms on Earth. Nucleotides are obtained in the diet and are also synthesized from common nutrients by the liver.

<span class="mw-page-title-main">Kinase</span> Enzyme catalyzing transfer of phosphate groups onto specific substrates

In biochemistry, a kinase is an enzyme that catalyzes the transfer of phosphate groups from high-energy, phosphate-donating molecules to specific substrates. This process is known as phosphorylation, where the high-energy ATP molecule donates a phosphate group to the substrate molecule. As a result, kinase produces a phosphorylated substrate and ADP. Conversely, it is referred to as dephosphorylation when the phosphorylated substrate donates a phosphate group and ADP gains a phosphate group. These two processes, phosphorylation and dephosphorylation, occur four times during glycolysis.

<span class="mw-page-title-main">Deoxycytidine</span> Chemical compound

Deoxycytidine is a deoxyribonucleoside, a component of deoxyribonucleic acid. It is similar to the ribonucleoside cytidine, but with one hydroxyl group removed from the C2' position.

<span class="mw-page-title-main">Cyclic nucleotide</span> Cyclic nucleic acid

A cyclic nucleotide (cNMP) is a single-phosphate nucleotide with a cyclic bond arrangement between the sugar and phosphate groups. Like other nucleotides, cyclic nucleotides are composed of three functional groups: a sugar, a nitrogenous base, and a single phosphate group. As can be seen in the cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) images, the 'cyclic' portion consists of two bonds between the phosphate group and the 3' and 5' hydroxyl groups of the sugar, very often a ribose.

<span class="mw-page-title-main">Uridine monophosphate synthase</span> Protein-coding gene in the species Homo sapiens

The enzyme Uridine monophosphate synthase catalyses the formation of uridine monophosphate (UMP), an energy-carrying molecule in many important biosynthetic pathways. In humans, the gene that codes for this enzyme is located on the long arm of chromosome 3 (3q13).

A salvage pathway is a pathway in which a biological product is produced from intermediates in the degradative pathway of its own or a similar substance. The term often refers to nucleotide salvage in particular, in which nucleotides are synthesized from intermediates in their degradative pathway.

<span class="mw-page-title-main">Thymidine kinase</span> Enzyme found in most living cells

Thymidine kinase is an enzyme, a phosphotransferase : 2'-deoxythymidine kinase, ATP-thymidine 5'-phosphotransferase, EC 2.7.1.21. It can be found in most living cells. It is present in two forms in mammalian cells, TK1 and TK2. Certain viruses also have genetic information for expression of viral thymidine kinases. Thymidine kinase catalyzes the reaction:

<span class="mw-page-title-main">Adenylate kinase</span> Class of enzymes

Adenylate kinase is a phosphotransferase enzyme that catalyzes the interconversion of the various adenosine phosphates. By constantly monitoring phosphate nucleotide levels inside the cell, ADK plays an important role in cellular energy homeostasis.

<span class="mw-page-title-main">Nucleoside-diphosphate kinase</span> Class of enzymes

Nucleoside-diphosphate kinases are enzymes that catalyze the exchange of terminal phosphate between different nucleoside diphosphates (NDP) and triphosphates (NTP) in a reversible manner to produce nucleotide triphosphates. Many NDP serve as acceptor while NTP are donors of phosphate group. The general reaction via ping-pong mechanism is as follows: XDP + YTP ←→ XTP + YDP. NDPK activities maintain an equilibrium between the concentrations of different nucleoside triphosphates such as, for example, when guanosine triphosphate (GTP) produced in the citric acid (Krebs) cycle is converted to adenosine triphosphate (ATP). Other activities include cell proliferation, differentiation and development, signal transduction, G protein-coupled receptor, endocytosis, and gene expression.

<span class="mw-page-title-main">Purine nucleoside phosphorylase</span> Enzyme

Purine nucleoside phosphorylase, PNP, PNPase or inosine phosphorylase is an enzyme that in humans is encoded by the NP gene. It catalyzes the chemical reaction

<span class="mw-page-title-main">Nucleic acid metabolism</span> Process

Nucleic acid metabolism is a collective term that refers to the variety of chemical reactions by which nucleic acids are either synthesized or degraded. Nucleic acids are polymers made up of a variety of monomers called nucleotides. Nucleotide synthesis is an anabolic mechanism generally involving the chemical reaction of phosphate, pentose sugar, and a nitrogenous base. Degradation of nucleic acids is a catabolic reaction and the resulting parts of the nucleotides or nucleobases can be salvaged to recreate new nucleotides. Both synthesis and degradation reactions require multiple enzymes to facilitate the event. Defects or deficiencies in these enzymes can lead to a variety of diseases.

Pyrimidine biosynthesis occurs both in the body and through organic synthesis.

<span class="mw-page-title-main">CTP synthetase</span> Enzyme

CTP synthase is an enzyme involved in pyrimidine biosynthesis that interconverts UTP and CTP.

<span class="mw-page-title-main">Orotate phosphoribosyltransferase</span> Class of enzymes

Orotate phosphoribosyltransferase (OPRTase) or orotic acid phosphoribosyltransferase is an enzyme involved in pyrimidine biosynthesis. It catalyzes the formation of orotidine 5'-monophosphate (OMP) from orotate and phosphoribosyl pyrophosphate. In yeast and bacteria, orotate phosphoribosyltransferase is an independent enzyme with a unique gene coding for the protein, whereas in mammals and other multicellular organisms, the catalytic function is carried out by a domain of the bifunctional enzyme UMP synthase (UMPS).

<span class="mw-page-title-main">Deoxycytidine kinase</span> Protein-coding gene in the species Homo sapiens

Deoxycytidine kinase (dCK) is an enzyme which is encoded by the DCK gene in humans. dCK predominantly phosphorylates deoxycytidine (dC) and converts dC into deoxycytidine monophosphate. dCK catalyzes one of the initial steps in the nucleoside salvage pathway and has the potential to phosphorylate other preformed nucleosides, specifically deoxyadenosine (dA) and deoxyguanosine (dG), and convert them into their monophosphate forms. There has been recent biomedical research interest in investigating dCK's potential as a therapeutic target for different types of cancer.

<span class="mw-page-title-main">Deoxyuridine monophosphate</span> Chemical compound

Deoxyuridine monophosphate (dUMP), also known as deoxyuridylic acid or deoxyuridylate in its conjugate acid and conjugate base forms, respectively, is a deoxynucleotide.

In enzymology, a cytidylate kinase is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">NT5C3</span> Protein-coding gene in the species Homo sapiens

Cytosolic 5'-nucleotidase 3 (NTC53), also known as cytosolic 5'-nucleotidase 3A, pyrimidine 5’-nucleotidase, and p56, is an enzyme that in humans is encoded by the NT5C3, or NT5C3A, gene on chromosome 7.

<span class="mw-page-title-main">CMP kinase</span> Enzyme found in humans

UMP-CMP kinase is an enzyme that in humans is encoded by the CMPK1 gene.

<span class="mw-page-title-main">CTP synthase 1</span> Protein-coding gene in the species Homo sapiens

CTP synthase 1 is an enzyme that is encoded by the CTPS1 gene in humans. CTP synthase 1 is an enzyme in the de novo pyrimidine synthesis pathway that catalyses the conversion of uridine triphosphate (UTP) to cytidine triphosphate (CTP). CTP is a key building block for the production of DNA, RNA and some phospholipids.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000143179 Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000026558 Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. 1 2 "Entrez Gene: UCK2 uridine-cytidine kinase 2".
  6. 1 2 3 Suzuki NN, Koizumi K, Fukushima M, Matsuda A, Inagaki F (May 2004). "Structural basis for the specificity, catalysis, and regulation of human uridine-cytidine kinase". Structure. 12 (5): 751–64. doi: 10.1016/j.str.2004.02.038 . PMID   15130468.
  7. 1 2 3 4 Appleby TC, Larson G, Cheney IW, Walker H, Wu JZ, Zhong W, Hong Z, Yao N (March 2005). "Structure of human uridine-cytidine kinase 2 determined by SIRAS using a rotating-anode X-ray generator and a single samarium derivative". Acta Crystallographica Section D. 61 (Pt 3): 278–84. Bibcode:2005AcCrD..61..278A. doi: 10.1107/s0907444904032937 . PMID   15735337.
  8. Sierra H, Cordova M, Chen CJ, Rajadhyaksha M (February 2015). "Confocal imaging-guided laser ablation of basal cell carcinomas: an ex vivo study". The Journal of Investigative Dermatology. 135 (2): 612–615. doi:10.1038/jid.2014.371. PMC   4289436 . PMID   25178106.
  9. Tomoike F, Nakagawa N, Kuramitsu S, Masui R (December 2015). "Structural and Biochemical Studies on the Reaction Mechanism of Uridine-Cytidine Kinase" (PDF). The Protein Journal. 34 (6): 411–20. doi:10.1007/s10930-015-9636-8. PMID   26510656. S2CID   23869822.
  10. 1 2 3 Van Rompay AR, Norda A, Lindén K, Johansson M, Karlsson A (May 2001). "Phosphorylation of uridine and cytidine nucleoside analogs by two human uridine-cytidine kinases". Molecular Pharmacology. 59 (5): 1181–6. doi:10.1124/mol.59.5.1181. PMID   11306702. S2CID   9290273.
  11. Koizumi K, Shimamoto Y, Azuma A, Wataya Y, Matsuda A, Sasaki T, Fukushima M (September 2001). "Cloning and expression of uridine/cytidine kinase cDNA from human fibrosarcoma cells". International Journal of Molecular Medicine. 8 (3): 273–8. doi:10.3892/ijmm.8.3.273. PMID   11494055.
  12. Kang GJ, Cooney DA, Moyer JD, Kelley JA, Kim HY, Marquez VE, Johns DG (January 1989). "Cyclopentenylcytosine triphosphate. Formation and inhibition of CTP synthetase". The Journal of Biological Chemistry. 264 (2): 713–8. doi: 10.1016/S0021-9258(19)85001-9 . PMID   2910861.
  13. Schumacher FR, Wang Z, Skotheim RI, Koster R, Chung CC, Hildebrandt MA, Kratz CP, Bakken AC, Bishop DT, Cook MB, Erickson RL, Fosså SD, Greene MH, Jacobs KB, Kanetsky PA, Kolonel LN, Loud JT, Korde LA, Le Marchand L, Lewinger JP, Lothe RA, Pike MC, Rahman N, Rubertone MV, Schwartz SM, Siegmund KD, Skinner EC, Turnbull C, Van Den Berg DJ, Wu X, Yeager M, Nathanson KL, Chanock SJ, Cortessis VK, McGlynn KA (July 2013). "Testicular germ cell tumor susceptibility associated with the UCK2 locus on chromosome 1q23". Human Molecular Genetics. 22 (13): 2748–53. doi:10.1093/hmg/ddt109. PMC   3674801 . PMID   23462292.
  14. Deans RM, Morgens DW, Ökesli A, Pillay S, Horlbeck MA, Kampmann M, Gilbert LA, Li A, Mateo R, Smith M, Glenn JS, Carette JE, Khosla C, Bassik MC (May 2016). "Parallel shRNA and CRISPR-Cas9 screens enable antiviral drug target identification". Nature Chemical Biology. 12 (5): 361–6. doi:10.1038/nchembio.2050. PMC   4836973 . PMID   27018887.
  15. Anderson E, Brockman R (1964). "Feedback onhibition of uridine kinase by cytidine triphosphate and uridine triphosphate". Biochimica et Biophysica Acta (BBA) - Specialized Section on Nucleic Acids and Related Subjects. 91 (3): 380–386. doi:10.1016/0926-6550(64)90067-2. PMID   14254009.
  16. Shimamoto Y, Koizumi K, Okabe H, Kazuno H, Murakami Y, Nakagawa F, Matsuda A, Sasaki T, Fukushima M (2002-07-01). "Sensitivity of Human Cancer Cells to the New Anticancer Ribo-nucleoside TAS–106 Is Correlated with Expression of Uridine-cytidine Kinase 2". Japanese Journal of Cancer Research. 93 (7): 825–833. doi:10.1111/j.1349-7006.2002.tb01325.x. PMC   5927072 . PMID   12149149.
  17. Golitsina NL, Danehy FT, Fellows R, Cretton-Scott E, Standring DN (March 2010). "Evaluation of the role of three candidate human kinases in the conversion of the hepatitis C virus inhibitor 2'-C-methyl-cytidine to its 5'-monophosphate metabolite". Antiviral Research. 85 (3): 470–81. doi:10.1016/j.antiviral.2009.10.020. PMID   19883694.
  18. Murata D, Endo Y, Obata T, Sakamoto K, Syouji Y, Kadohira M, Matsuda A, Sasaki T (October 2004). "A crucial role of uridine/cytidine kinase 2 in antitumor activity of 3'-ethynyl nucleosides". Drug Metabolism and Disposition. 32 (10): 1178–82. doi:10.1124/dmd.104.000737. hdl: 2297/2651 . PMID   15280220. S2CID   26650853.
  19. Malami I, Abdul AB, Abdullah R, Bt Kassim NK, Waziri P, Christopher Etti I (April 2016). "In Silico Discovery of Potential Uridine-Cytidine Kinase 2 Inhibitors from the Rhizome of Alpinia mutica". Molecules. 21 (4): 417. doi: 10.3390/molecules21040417 . PMC   6274218 . PMID   27070566.
  20. van den Berg AA, van Lenthe H, Busch S, de Korte D, van Kuilenburg AB, van Gennip AH (August 1994). "The roles of uridine-cytidine kinase and CTP synthetase in the synthesis of CTP in malignant human T-lymphocytic cells". Leukemia. 8 (8): 1375–8. PMID   8057676.
  21. Malami, Ibrahim; Abdul, Ahmad Bustamam; Abdullah, Rasedee; Kassim, Nur Kartinee Bt; Rosli, Rozita; Yeap, Swee Keong; Waziri, Peter; Etti, Imaobong Christopher; Bello, Muhammad Bashir (2017-01-19). Palit Deb, Swati (ed.). "Crude Extracts, Flavokawain B and Alpinetin Compounds from the Rhizome of Alpinia mutica Induce Cell Death via UCK2 Enzyme Inhibition and in Turn Reduce 18S rRNA Biosynthesis in HT-29 Cells". PLOS ONE. 12 (1): e0170233. Bibcode:2017PLoSO..1270233M. doi: 10.1371/journal.pone.0170233 . ISSN   1932-6203. PMC   5245823 . PMID   28103302.
  22. Fu, Yi; Wei, Xin-dong; Guo, Luoting; Wu, Kai; Le, Jiamei; Ma, Yujie; Kong, Xiaoni; Tong, Ying; Wu, Hailong (2022-05-20). "The Metabolic and Non-Metabolic Roles of UCK2 in Tumor Progression". Frontiers in Oncology. 12. doi: 10.3389/fonc.2022.904887 . ISSN   2234-943X. PMC   9163393 .
  23. Wu, Yingjie; Jamal, Muhammad; Xie, Tian; Sun, Jiaxing; Song, Tianbao; Yin, Qian; Li, Jingyuan; Pan, Shan; Zeng, Xingruo; Xie, Songping; Zhang, Qiuping (2019). "Uridine-cytidine kinase 2 ( UCK 2): A potential diagnostic and prognostic biomarker for lung cancer". Cancer Science. 110 (9): 2734–2747. doi:10.1111/cas.14125. ISSN   1347-9032. PMC   6726693 .
  24. Fu, Yi; Wei, Xin-dong; Guo, Luoting; Wu, Kai; Le, Jiamei; Ma, Yujie; Kong, Xiaoni; Tong, Ying; Wu, Hailong (2022-05-20). "The Metabolic and Non-Metabolic Roles of UCK2 in Tumor Progression". Frontiers in Oncology. 12. doi: 10.3389/fonc.2022.904887 . ISSN   2234-943X. PMC   9163393 .

Further reading