In geometry, a unital is a set of n3 + 1 points arranged into subsets of size n + 1 so that every pair of distinct points of the set are contained in exactly one subset. [lower-alpha 1] This is equivalent to saying that a unital is a 2-(n3 + 1, n + 1, 1) block design. Some unitals may be embedded in a projective plane of order n2 (the subsets of the design become sets of collinear points in the projective plane). In this case of embedded unitals, every line of the plane intersects the unital in either 1 or n + 1 points. In the Desarguesian planes, PG(2,q2), the classical examples of unitals are given by nondegenerate Hermitian curves. There are also many non-classical examples. The first and the only known unital with non prime power parameters, n=6, was constructed by Bhaskar Bagchi and Sunanda Bagchi. [1] It is still unknown if this unital can be embedded in a projective plane of order 36, if such a plane exists.
We review some terminology used in projective geometry.
A correlation of a projective geometry is a bijection on its subspaces that reverses containment. In particular, a correlation interchanges points and hyperplanes. [2]
A correlation of order two is called a polarity.
A polarity is called a unitary polarity if its associated sesquilinear form s with companion automorphism α satisfies
A point is called an absolute point of a polarity if it lies on the image of itself under the polarity.
The absolute points of a unitary polarity of the projective geometry PG(d,F), for some d ≥ 2, is a nondegenerate Hermitian variety, and if d = 2 this variety is called a nondegenerate Hermitian curve. [3]
In PG(2,q2) for some prime power q, the set of points of a nondegenerate Hermitian curve form a unital, [4] which is called a classical unital.
Let be a nondegenerate Hermitian curve in for some prime power . As all nondegenerate Hermitian curves in the same plane are projectively equivalent, can be described in terms of homogeneous coordinates as follows: [5]
Another family of unitals based on Ree groups was constructed by H. Lüneburg. [6] Let Γ = R(q) be the Ree group of type 2G2 of order (q3 + 1)q3(q − 1) where q = 32m+1. Let P be the set of all q3 + 1 Sylow 3-subgroups of Γ. Γ acts doubly transitively on this set by conjugation (it will be convenient to think of these subgroups as points that Γ is acting on.) For any S and T in P, the pointwise stabilizer, ΓS,T is cyclic of order q - 1, and thus contains a unique involution, μ. Each such involution fixes exactly q + 1 points of P. Construct a block design on the points of P whose blocks are the fixed point sets of these various involutions μ. Since Γ acts doubly transitively on P, this will be a 2-design with parameters 2-(q3 + 1, q + 1, 1) called a Ree unital. [7]
Lüneburg also showed that the Ree unitals can not be embedded in projective planes of order q2 (Desarguesian or not) such that the automorphism group Γ is induced by a collineation group of the plane. [8] For q = 3, Grüning [9] proved that a Ree unital can not be embedded in any projective plane of order 9. [10]
In the four projective planes of order 9 (the Desarguesian plane PG(2,9), the Hall plane of order 9, the dual Hall plane of order 9 and the Hughes plane of order 9. [lower-alpha 2] ), an exhaustive computer search by Penttila and Royle [11] found 18 unitals (up to equivalence) with n = 3 in these four planes: two in PG(2,9) (both Buekenhout), four in the Hall plane (two Buekenhout, two not), and so another four in the dual Hall plane, and eight in the Hughes plane. However, one of the Buekenhout unitals in the Hall plane is self-dual, [12] and thus gets counted again in the dual Hall plane. Thus, there are 17 distinct embeddable unitals with n = 3. On the other hand, a nonexhaustive computer search found over 900 mutually nonisomorphic designs which are unitals with n = 3. [13]
Since unitals are block designs, two unitals are said to be isomorphic if there is a design isomorphism between them, that is, a bijection between the point sets which maps blocks to blocks. This concept does not take into account the property of embeddability, so to do so we say that two unitals, embedded in the same ambient plane, are equivalent if there is a collineation of the plane which maps one unital to the other. [10]
By examining the classical unital in in the Bruck/Bose model, Buekenhout [14] provided two constructions, which together proved the existence of an embedded unital in any finite 2-dimensional translation plane. Metz [15] subsequently showed that one of Buekenhout's constructions actually yields non-classical unitals in all finite Desarguesian planes of square order at least 9. These Buekenhout-Metz unitals have been extensively studied. [16] [17]
The core idea in Buekenhout's construction is that when one looks at in the higher-dimensional Bruck/Bose model, which lies in , the equation of the Hermitian curve satisfied by a classical unital becomes a quadric surface in , either a point-cone over a 3-dimensional ovoid if the line represented by the spread of the Bruck/Bose model meets the unital in one point, or a non-singular quadric otherwise. Because these objects have known intersection patterns with respect to planes of , the resulting point set remains a unital in any translation plane whose generating spread contains all of the same lines as the original spread within the quadric surface. In the ovoidal cone case, this forced intersection consists of a single line, and any spread can be mapped onto a spread containing this line, showing that every translation plane of this form admits an embedded unital.
Hermitian varieties are in a sense a generalisation of quadrics, and occur naturally in the theory of polarities.
Let K be a field with an involutive automorphism . Let n be an integer and V be an (n+1)-dimensional vector space over K.
A Hermitian variety H in PG(V) is a set of points of which the representing vector lines consisting of isotropic points of a non-trivial Hermitian sesquilinear form on V.
Let be a basis of V. If a point p in the projective space has homogeneous coordinates with respect to this basis, it is on the Hermitian variety if and only if :
where and not all
If one constructs the Hermitian matrix A with , the equation can be written in a compact way :
where
Let p be a point on the Hermitian variety H. A line L through p is by definition tangent when it is contains only one point (p itself) of the variety or lies completely on the variety. One can prove that these lines form a subspace, either a hyperplane of the full space. In the latter case, the point is singular.
In mathematics, a projective plane is a geometric structure that extends the concept of a plane. In the ordinary Euclidean plane, two lines typically intersect at a single point, but there are some pairs of lines that do not intersect. A projective plane can be thought of as an ordinary plane equipped with additional "points at infinity" where parallel lines intersect. Thus any two distinct lines in a projective plane intersect at exactly one point.
In mathematics, a quadric or quadric surface (quadric hypersurface in higher dimensions), is a generalization of conic sections (ellipses, parabolas, and hyperbolas). It is a hypersurface (of dimension D) in a (D + 1)-dimensional space, and it is defined as the zero set of an irreducible polynomial of degree two in D + 1 variables; for example, D = 1 in the case of conic sections. When the defining polynomial is not absolutely irreducible, the zero set is generally not considered a quadric, although it is often called a degenerate quadric or a reducible quadric.
A finite geometry is any geometric system that has only a finite number of points. The familiar Euclidean geometry is not finite, because a Euclidean line contains infinitely many points. A geometry based on the graphics displayed on a computer screen, where the pixels are considered to be the points, would be a finite geometry. While there are many systems that could be called finite geometries, attention is mostly paid to the finite projective and affine spaces because of their regularity and simplicity. Other significant types of finite geometry are finite Möbius or inversive planes and Laguerre planes, which are examples of a general type called Benz planes, and their higher-dimensional analogs such as higher finite inversive geometries.
In projective geometry, duality or plane duality is a formalization of the striking symmetry of the roles played by points and lines in the definitions and theorems of projective planes. There are two approaches to the subject of duality, one through language and the other a more functional approach through special mappings. These are completely equivalent and either treatment has as its starting point the axiomatic version of the geometries under consideration. In the functional approach there is a map between related geometries that is called a duality. Such a map can be constructed in many ways. The concept of plane duality readily extends to space duality and beyond that to duality in any finite-dimensional projective geometry.
In mathematics, a sesquilinear form is a generalization of a bilinear form that, in turn, is a generalization of the concept of the dot product of Euclidean space. A bilinear form is linear in each of its arguments, but a sesquilinear form allows one of the arguments to be "twisted" in a semilinear manner, thus the name; which originates from the Latin numerical prefix sesqui- meaning "one and a half". The basic concept of the dot product – producing a scalar from a pair of vectors – can be generalized by allowing a broader range of scalar values and, perhaps simultaneously, by widening the definition of a vector.
In mathematics, Pappus's hexagon theorem states that
In mathematics, a dessin d'enfant is a type of graph embedding used to study Riemann surfaces and to provide combinatorial invariants for the action of the absolute Galois group of the rational numbers. The name of these embeddings is French for a "child's drawing"; its plural is either dessins d'enfant, "child's drawings", or dessins d'enfants, "children's drawings".
In mathematics, a translation plane is a projective plane which admits a certain group of symmetries. Along with the Hughes planes and the Figueroa planes, translation planes are among the most well-studied of the known non-Desarguesian planes, and the vast majority of known non-Desarguesian planes are either translation planes, or can be obtained from a translation plane via successive iterations of dualization and/or derivation.
In geometry, a generalized quadrangle is an incidence structure whose main feature is the lack of any triangles (yet containing many quadrangles). A generalized quadrangle is by definition a polar space of rank two. They are the generalized n-gons with n = 4 and near 2n-gons with n = 2. They are also precisely the partial geometries pg(s,t,α) with α = 1.
In projective geometry an oval is a point set in a plane that is defined by incidence properties. The standard examples are the nondegenerate conics. However, a conic is only defined in a pappian plane, whereas an oval may exist in any type of projective plane. In the literature, there are many criteria which imply that an oval is a conic, but there are many examples, both infinite and finite, of ovals in pappian planes which are not conics.
In projective geometry an ovoid is a sphere like pointset (surface) in a projective space of dimension d ≥ 3. Simple examples in a real projective space are hyperspheres (quadrics). The essential geometric properties of an ovoid are:
In mathematics, a Euclidean plane is a Euclidean space of dimension two, denoted or . It is a geometric space in which two real numbers are required to determine the position of each point. It is an affine space, which includes in particular the concept of parallel lines. It has also metrical properties induced by a distance, which allows to define circles, and angle measurement.
In mathematics, André planes are a class of finite translation planes found by André. The Desarguesian plane and the Hall planes are examples of André planes; the two-dimensional regular nearfield planes are also André planes.
In mathematics, a Hall plane is a non-Desarguesian projective plane constructed by Marshall Hall Jr. (1943). There are examples of order p2n for every prime p and every positive integer n provided p2n > 4.
In mathematics, the classical Möbius plane is the Euclidean plane supplemented by a single point at infinity. It is also called the inversive plane because it is closed under inversion with respect to any generalized circle, and thus a natural setting for planar inversive geometry.
In mathematics, a quadratic set is a set of points in a projective space that bears the same essential incidence properties as a quadric.
In geometry, specifically projective geometry, a blocking set is a set of points in a projective plane that every line intersects and that does not contain an entire line. The concept can be generalized in several ways. Instead of talking about points and lines, one could deal with n-dimensional subspaces and m-dimensional subspaces, or even more generally, objects of type 1 and objects of type 2 when some concept of intersection makes sense for these objects. A second way to generalize would be to move into more abstract settings than projective geometry. One can define a blocking set of a hypergraph as a set that meets all edges of the hypergraph.
In projective geometry, a von Staudt conic is the point set defined by all the absolute points of a polarity that has absolute points. In the real projective plane a von Staudt conic is a conic section in the usual sense. In more general projective planes this is not always the case. Karl Georg Christian von Staudt introduced this definition in Geometrie der Lage (1847) as part of his attempt to remove all metrical concepts from projective geometry.
In mathematics, a quadric or quadric hypersurface is the subspace of N-dimensional space defined by a polynomial equation of degree 2 over a field. Quadrics are fundamental examples in algebraic geometry. The theory is simplified by working in projective space rather than affine space. An example is the quadric surface
A frequently studied problem in finite geometry is to identify ways in which an object can be covered by other simpler objects such as points, lines, and planes. In projective geometry, a specific instance of this problem that has numerous applications is determining whether, and how, a projective space can be covered by pairwise disjoint subspaces which have the same dimension; such a partition is called a spread. Specifically, a spread of a projective space , where is an integer and a division ring, is a set of -dimensional subspaces, for some such that every point of the space lies in exactly one of the elements of the spread.