Vapor lock is a problem caused by liquid fuel changing state to vapor while still in the fuel delivery system of gasoline-fueled internal combustion engines. This disrupts the operation of the fuel pump, causing loss of feed pressure to the carburetor or fuel injection system, resulting in transient loss of power or complete stalling. Restarting the engine from this state may be difficult. [1]
The fuel can vaporize due to being heated by the engine, by the local climate or due to a lower boiling point at high altitude. In regions where fuels with lower viscosity (and lower boiling threshold) are used during the winter to improve engine startup, continued use of the specialized fuels during the summer can cause vapor lock to occur more readily.
Vapor lock was far more common in older gasoline-fuel systems incorporating a low-pressure mechanical fuel pump driven by the engine, located in the engine compartment and feeding a carburetor. Such pumps were typically located higher than the fuel tank, were directly heated by the engine and fed fuel directly to the float bowl inside the carburetor. Fuel was drawn under negative pressure (gauge pressure) from the feed line, increasing the risk of a vapor lock developing between the tank and pump. A vapor lock being drawn into the fuel pump could disrupt the fuel pressure long enough for the float chamber in the carburetor to partially or completely drain, causing fuel starvation in the engine. Even temporary disruption of fuel supply into the float chamber is not ideal; most carburetors are designed to run at a fixed level of fuel in the float bowl and reducing the level will reduce the fuel to air mixture delivered to the engine.
Carburetor units may not effectively deal with fuel vapor being delivered to the float chamber. Most designs incorporate a pressure-balance duct linking the top of the float bowl with either the intake to the carburetor or the outside air. Even if the pump can handle vapor locks effectively, fuel vapor entering the float bowl has to be vented. If this is done via the intake system, the mixture is, in effect, enriched, creating a mixture-control and pollution issue. If it is done by venting to the outside, the result is direct hydrocarbon pollution and an effective loss of fuel efficiency and possibly a fuel-odor problem. For this reason, some fuel-delivery systems allow fuel vapor to be returned to the fuel tank to be condensed back to the liquid phase, or use an active carbon filled canister where fuel vapor is absorbed. This is usually implemented by removing fuel vapor from the fuel line near the engine rather than from the float bowl. Such a system may also divert excess fuel pressure from the pump back to the tank.
Most modern engines are equipped with fuel injection and have an electric submersible fuel pump in the fuel tank. Moving the fuel pump to the interior of the tank helps prevent vapor lock since the entire fuel-delivery system is under positive pressure and the fuel pump runs cooler than it would be if it is located in the engine compartment. This is the primary reason that vapor lock is rare in modern fuel systems. For the same reason, some carbureted engines are retrofitted with an electric fuel pump near the fuel tank.
A vapor lock is more likely to develop when the vehicle is in traffic because the under-hood temperature tends to rise. A vapor lock can also develop when the engine is stopped while hot and the vehicle is parked for a short period. The fuel in the line near the engine does not move and can thus heat up sufficiently to form a vapor lock. The problem is more likely in hot weather or high altitude in either case.
Gravity-feed fuel systems are not immune to vapor lock. Much of the foregoing applies equally to a gravity-feed system. If vapor forms in the fuel line, its lower density reduces the pressure developed by the weight of the fuel. This pressure is what normally moves fuel from the tank to the carburetor, so fuel supply will be disrupted until the vapor is removed, either by the remaining fuel pressure forcing it into the float bowl and out the vent or by allowing the vapor to cool and re-condense.
Vapor lock has been the cause of forced landings in aircraft. That is why aviation fuel is manufactured to far lower vapor pressure than automotive gasoline (petrol). [ citation needed ] In addition, aircraft are far more susceptible because of their ability to change altitude and associated ambient pressure rapidly. Liquids boil at lower temperatures when in lower pressure environments.
Vapor lock was a common occurrence in stock car racing, since the cars have traditionally used gasoline and carburetors. With the introduction of the fuel injection requirement for NASCAR-sanctioned events in 2012, vapor lock has been largely eliminated.
Vapor lock is also less common in other motorsports, such as Formula One and IndyCar racing, due to the use of fuel injection and alcohol fuels (ethanol or methanol), which have a lower vapor pressure than gasoline. However, it is not entirely unlikely to happen, as the double Red Bull Racing retirements at the 2022 Bahrain Grand Prix were caused by vapor lock, presumably due to the unusually high temperatures in the fuel system. [2]
The higher the volatility of the fuel, the more likely it is that vapor lock will occur. Historically, gasoline was a more volatile distillate than it is now and was more prone to vapor lock. Conversely, diesel fuel is far less volatile than gasoline, so that diesel engines almost never suffer from vapor lock. However, diesel engine fuel systems are far more susceptible to air locks in their fuel lines, because standard diesel fuel injection pumps rely on the fuel being non-compressible. Air locks are caused by air leaking into the fuel delivery line or entering from the tank; common causes include the fuel tank being allowed to run dry, changing a fuel filter, or leaky fuel lines. Air locks are eliminated by turning the engine over for a time using the starter motor, or by bleeding the fuel system.
Modern diesel injection systems have self-bleeding electric pumps which eliminate the air lock problem.
The diesel engine, named after Rudolf Diesel, is an internal combustion engine in which ignition of the fuel is caused by the elevated temperature of the air in the cylinder due to mechanical compression; thus, the diesel engine is called a compression-ignition engine. This contrasts with engines using spark plug-ignition of the air-fuel mixture, such as a petrol engine or a gas engine.
Gasoline or petrol is a petrochemical product characterized as a transparent, yellowish, and flammable liquid normally used as a fuel for spark-ignited internal combustion engines. When formulated as a fuel for engines, gasoline is chemically composed of organic compounds derived from the fractional distillation of petroleum and later chemically enhanced with gasoline additives. It is a high-volume profitable product produced in crude oil refineries.
A carburetor is a device used by a gasoline internal combustion engine to control and mix air and fuel entering the engine. The primary method of adding fuel to the intake air is through the Venturi tube in the main metering circuit, though various other components are also used to provide extra fuel or air in specific circumstances.
Liquid hydrogen (H2(l)) is the liquid state of the element hydrogen. Hydrogen is found naturally in the molecular H2 form.
In internal combustion engines, exhaust gas recirculation (EGR) is a nitrogen oxide (NOx) emissions reduction technique used in petrol/gasoline, diesel engines and some hydrogen engines. EGR works by recirculating a portion of an engine's exhaust gas back to the engine cylinders. The exhaust gas displaces atmospheric air and reduces O2 in the combustion chamber. Reducing the amount of oxygen reduces the amount of fuel that can burn in the cylinder thereby reducing peak in-cylinder temperatures. The actual amount of recirculated exhaust gas varies with the engine operating parameters.
A stratified charge engine describes a certain type of internal combustion engine, usually spark ignition (SI) engine that can be used in trucks, automobiles, portable and stationary equipment. The term "stratified charge" refers to the working fluids and fuel vapors entering the cylinder. Usually the fuel is injected into the cylinder or enters as a fuel rich vapor where a spark or other means are used to initiate ignition where the fuel rich zone interacts with the air to promote complete combustion. A stratified charge can allow for slightly higher compression ratios without "knock," and leaner air/fuel ratio than in conventional internal combustion engines.
A fuel pump is a component used in many liquid-fuelled engines to transfer the fuel from the fuel tank to the device where it is mixed with the intake air.
A nitrous oxide engine, or nitrous oxide system (NOS) is an internal combustion engine in which oxygen for burning the fuel comes from the decomposition of nitrous oxide, N2O, as well as air. The system increases the engine's power output by allowing fuel to be burned at a higher-than-normal rate, because of the higher partial pressure of oxygen injected with the fuel mixture. Nitrous injection systems may be "dry", where the nitrous oxide is injected separately from fuel, or "wet" in which additional fuel is carried into the engine along with the nitrous. NOS may not be permitted for street or highway use, depending on local regulations. N2O use is permitted in certain classes of auto racing. Reliable operation of an engine with nitrous injection requires careful attention to the strength of engine components and to the accuracy of the mixing systems, otherwise destructive detonations or exceeding engineered component maximums may occur. Nitrous oxide systems were applied as early as World War II for certain aircraft engines.
Indirect injection in an internal combustion engine is fuel injection where fuel is not directly injected into the combustion chamber.
Dieseling or engine run-on is a condition that can occur in spark-plug-ignited, gasoline-powered internal combustion engines, whereby the engine keeps running for a short period after being turned off, drawing fuel through the carburetor, into the engine and igniting it without a spark.
Manifold vacuum, or engine vacuum in an internal combustion engine is the difference in air pressure between the engine's intake manifold and Earth's atmosphere.
The M123 engine family was a straight-6 automobile engine from Mercedes-Benz, used from 1976 to 1984 in the W123 series models 250 and 250 T. It replaced the 6-cylinder engines M180 in the 230 and M130 in the 250 versions from the W114 series.
A flooded engine is an internal combustion engine that has been fed an excessively rich air-fuel mixture that cannot be ignited. This is caused by the mixture exceeding the upper explosive limit for the particular fuel. An engine in this condition will not start until the excessively rich mixture has been cleared. It is also possible for an engine to stall from a running state due to this condition.
A throttle is a mechanism by which fluid flow is managed by constriction or obstruction.
Engine efficiency of thermal engines is the relationship between the total energy contained in the fuel, and the amount of energy used to perform useful work. There are two classifications of thermal engines-
Push starting, also known as bump starting, roll starting, clutch starting, popping the clutch or crash starting, is a method of starting a motor vehicle with an internal combustion engine that has a manual transmission, a mechanical fuel pump, and a mechanically driven generator or alternator. By pushing or letting the vehicle roll downhill then engaging the clutch at the appropriate speed the engine will turn over and start. The technique is most commonly employed when other starting methods are unavailable.
A pressure carburetor is a type of fuel metering system manufactured by the Bendix Corporation for piston aircraft engines, starting in the 1940s. It is recognized as an early type of throttle-body fuel injection and was developed to prevent fuel starvation during inverted flight.
Internal combustion engines come in a wide variety of types, but have certain family resemblances, and thus share many common types of components.
Of the three types of carburetors used on large, high-performance aircraft engines manufactured in the United States during World War II, the Bendix-Stromberg pressure carburetor was the one most commonly found. The other two carburetor types were manufactured by Chandler Groves and Chandler Evans Control Systems (CECO). Both of these types of carburetors had a relatively large number of internal parts, and in the case of the Holley Carburetor, there were complications in its "variable venturi" design.
An internal combustion engine is a heat engine in which the combustion of a fuel occurs with an oxidizer in a combustion chamber that is an integral part of the working fluid flow circuit. In an internal combustion engine, the expansion of the high-temperature and high-pressure gases produced by combustion applies direct force to some component of the engine. The force is typically applied to pistons, turbine blades, a rotor, or a nozzle. This force moves the component over a distance, transforming chemical energy into kinetic energy which is used to propel, move or power whatever the engine is attached to.