This article needs additional citations for verification .(May 2012) |
In mathematics, the discussion of vector fields on spheres was a classical problem of differential topology, beginning with the hairy ball theorem, and early work on the classification of division algebras.
Specifically, the question is how many linearly independent smooth nowhere-zero vector fields can be constructed on a sphere in -dimensional Euclidean space. A definitive answer was provided in 1962 by Frank Adams. It was already known, [1] by direct construction using Clifford algebras, that there were at least such fields (see definition below). Adams applied homotopy theory and topological K-theory [2] to prove that no more independent vector fields could be found. Hence is the exact number of pointwise linearly independent vector fields that exist on an ()-dimensional sphere.
In detail, the question applies to the 'round spheres' and to their tangent bundles: in fact since all exotic spheres have isomorphic tangent bundles, the Radon–Hurwitz numbers determine the maximum number of linearly independent sections of the tangent bundle of any homotopy sphere. The case of odd is taken care of by the Poincaré–Hopf index theorem (see hairy ball theorem), so the case even is an extension of that. Adams showed that the maximum number of continuous (smooth would be no different here) pointwise linearly-independent vector fields on the ()-sphere is exactly .
The construction of the fields is related to the real Clifford algebras, which is a theory with a periodicity modulo 8 that also shows up here. By the Gram–Schmidt process, it is the same to ask for (pointwise) linear independence or fields that give an orthonormal basis at each point.
The Radon–Hurwitz numbers occur in earlier work of Johann Radon (1922) and Adolf Hurwitz (1923) on the Hurwitz problem on quadratic forms. [3] For written as the product of an odd number and a power of two , write
Then [3]
The first few values of are (from (sequence A053381 in the OEIS )):
For odd , the value of the function is one.
These numbers occur also in other, related areas. In matrix theory, the Radon–Hurwitz number counts the maximum size of a linear subspace of the real matrices, for which each non-zero matrix is a similarity transformation, i.e. a product of an orthogonal matrix and a scalar matrix. In quadratic forms, the Hurwitz problem asks for multiplicative identities between quadratic forms. The classical results were revisited in 1952 by Beno Eckmann. They are now applied in areas including coding theory and theoretical physics.
In geometry and physics, spinors are elements of a complex number-based vector space that can be associated with Euclidean space. A spinor transforms linearly when the Euclidean space is subjected to a slight (infinitesimal) rotation, but unlike geometric vectors and tensors, a spinor transforms to its negative when the space completed one turn, or 360°. It takes a rotation of 720° for a spinor to go back to its original state. This property characterizes spinors: spinors can be viewed as the "square roots" of vectors.
In mathematics and physics, a vector space is a set whose elements, often called vectors, may be added together and multiplied ("scaled") by numbers called scalars. Scalars are often real numbers, but can be complex numbers or, more generally, elements of any field. The operations of vector addition and scalar multiplication must satisfy certain requirements, called vector axioms. The terms real vector space and complex vector space are often used to specify the nature of the scalars: real coordinate space or complex coordinate space.
In mathematics, a Clifford algebra is an algebra generated by a vector space with a quadratic form, and is a unital associative algebra. As K-algebras, they generalize the real numbers, complex numbers, quaternions and several other hypercomplex number systems. The theory of Clifford algebras is intimately connected with the theory of quadratic forms and orthogonal transformations. Clifford algebras have important applications in a variety of fields including geometry, theoretical physics and digital image processing. They are named after the English mathematician William Kingdon Clifford (1845–1879).
In mathematics, the orthogonal group in dimension , denoted , is the group of distance-preserving transformations of a Euclidean space of dimension that preserve a fixed point, where the group operation is given by composing transformations. The orthogonal group is sometimes called the general orthogonal group, by analogy with the general linear group. Equivalently, it is the group of orthogonal matrices, where the group operation is given by matrix multiplication. The orthogonal group is an algebraic group and a Lie group. It is compact.
In mathematics, a vector bundle is a topological construction that makes precise the idea of a family of vector spaces parameterized by another space : to every point of the space we associate a vector space in such a way that these vector spaces fit together to form another space of the same kind as , which is then called a vector bundle over .
In mathematics, conformal geometry is the study of the set of angle-preserving (conformal) transformations on a space.
In mathematics, a Lie algebroid is a vector bundle together with a Lie bracket on its space of sections and a vector bundle morphism , satisfying a Leibniz rule. A Lie algebroid can thus be thought of as a "many-object generalisation" of a Lie algebra.
Algebraic K-theory is a subject area in mathematics with connections to geometry, topology, ring theory, and number theory. Geometric, algebraic, and arithmetic objects are assigned objects called K-groups. These are groups in the sense of abstract algebra. They contain detailed information about the original object but are notoriously difficult to compute; for example, an important outstanding problem is to compute the K-groups of the integers.
In theoretical physics, the Batalin–Vilkovisky (BV) formalism was developed as a method for determining the ghost structure for Lagrangian gauge theories, such as gravity and supergravity, whose corresponding Hamiltonian formulation has constraints not related to a Lie algebra. The BV formalism, based on an action that contains both fields and "antifields", can be thought of as a vast generalization of the original BRST formalism for pure Yang–Mills theory to an arbitrary Lagrangian gauge theory. Other names for the Batalin–Vilkovisky formalism are field-antifield formalism, Lagrangian BRST formalism, or BV–BRST formalism. It should not be confused with the Batalin–Fradkin–Vilkovisky (BFV) formalism, which is the Hamiltonian counterpart.
In the mathematical field of differential geometry, the exterior covariant derivative is an extension of the notion of exterior derivative to the setting of a differentiable principal bundle or vector bundle with a connection.
In mathematics, the Lie–Kolchin theorem is a theorem in the representation theory of linear algebraic groups; Lie's theorem is the analog for linear Lie algebras.
In mathematics, a Killing vector field, named after Wilhelm Killing, is a vector field on a Riemannian manifold that preserves the metric. Killing fields are the infinitesimal generators of isometries; that is, flows generated by Killing fields are continuous isometries of the manifold. More simply, the flow generates a symmetry, in the sense that moving each point of an object the same distance in the direction of the Killing vector will not distort distances on the object.
In mathematics, an Adams operation, denoted ψk for natural numbers k, is a cohomology operation in topological K-theory, or any allied operation in algebraic K-theory or other types of algebraic construction, defined on a pattern introduced by Frank Adams. The basic idea is to implement some fundamental identities in symmetric function theory, at the level of vector bundles or other representing object in more abstract theories.
In mathematics, a quaternion algebra over a field F is a central simple algebra A over F that has dimension 4 over F. Every quaternion algebra becomes a matrix algebra by extending scalars, i.e. for a suitable field extension K of F, is isomorphic to the 2 × 2 matrix algebra over K.
In mathematics, a differentiable manifold of dimension n is called parallelizable if there exist smooth vector fields
In mathematics, a Clifford bundle is an algebra bundle whose fibers have the structure of a Clifford algebra and whose local trivializations respect the algebra structure. There is a natural Clifford bundle associated to any (pseudo) Riemannian manifold M which is called the Clifford bundle of M.
In mathematics, Reidemeister torsion is a topological invariant of manifolds introduced by Kurt Reidemeister for 3-manifolds and generalized to higher dimensions by Wolfgang Franz (1935) and Georges de Rham (1936). Analytic torsion is an invariant of Riemannian manifolds defined by Daniel B. Ray and Isadore M. Singer as an analytic analogue of Reidemeister torsion. Jeff Cheeger and Werner Müller (1978) proved Ray and Singer's conjecture that Reidemeister torsion and analytic torsion are the same for compact Riemannian manifolds.
In mathematics, Hurwitz's theorem is a theorem of Adolf Hurwitz (1859–1919), published posthumously in 1923, solving the Hurwitz problem for finite-dimensional unital real non-associative algebras endowed with a positive-definite quadratic form. The theorem states that if the quadratic form defines a homomorphism into the positive real numbers on the non-zero part of the algebra, then the algebra must be isomorphic to the real numbers, the complex numbers, the quaternions, or the octonions. Such algebras, sometimes called Hurwitz algebras, are examples of composition algebras.
In mathematics, the Hurwitz problem is the problem of finding multiplicative relations between quadratic forms which generalise those known to exist between sums of squares in certain numbers of variables.
Lagrangian field theory is a formalism in classical field theory. It is the field-theoretic analogue of Lagrangian mechanics. Lagrangian mechanics is used to analyze the motion of a system of discrete particles each with a finite number of degrees of freedom. Lagrangian field theory applies to continua and fields, which have an infinite number of degrees of freedom.